期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and properties of probeless friction stir spot welding of AZ31 magnesium alloy joints 被引量:7
1
作者 Xia-wei YANG Wu-yuan FENG +4 位作者 Wen-ya LI Xiu-rong DONG Ya-xin XU Qiang CHU Shuo-tian YAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2300-2309,共10页
The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical prope... The AZ31 magnesium alloy with a thickness of 1.8 mm was welded by the probeless friction stir spot welding process without Zn interlayer.The influence of process parameters on joint microstructure and mechanical properties was investigated by using different rotating speeds and dwell time.Microstructure of joints is divided into three regions:stir zone,thermomechanically-affected zone and heat-affected zone.With the increase of rotation speed and dwell time,the depth of stir zone gradually increases,and hook defects extend from the interface of two plates to the surface of the upper plate.The tensile shear strength of joints and two fracture modes(shear fracture and plug fracture)are closely related to hook defects.The maximum tensile shear strength of the joint is 4.22 kN when rotation speed and dwell time are 1180 r/min and 9 s,respectively.Microhardness value and its fluctuation in upper sheet are evidently higher than those of the lower sheet. 展开更多
关键词 probeless friction stir spot welding AZ31 alloy mechanical properties fracture mechanism
在线阅读 下载PDF
Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy 被引量:15
2
作者 Q. Chu W.Y. Li +4 位作者 X.W. Yang J.J. Shen A. Vairis W.Y. Feng W.B. Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第10期1739-1746,共8页
In this work, a third generation AI-Li alloy has been successfully spot welded with probeless friction stir spot welding (P-FSSW), which is a variant of conventional friction stir welding. The Box-Behnken exper-imen... In this work, a third generation AI-Li alloy has been successfully spot welded with probeless friction stir spot welding (P-FSSW), which is a variant of conventional friction stir welding. The Box-Behnken exper-imental design in response surface methodology (RSM) was applied to optimize the P-FSSW parameters to attain maximum tensile/shear strength of the spot joints. Results show that an optimal failure load of 7.83 kN was obtained under a dwell time of 7.2 s, rotation speed of 950 rpm and plunge rate of 30 mm/rain. Sufficient dwell time is essential for heat conduction, material flow and expansion of the stir zone to form a sound joint. Two fracture modes were observed, which were significantly affected by hook defect. In addition to mechanical testing, electron backscattering diffraction (EBSD) and differential scanning calorimetry (DSC) were used for microstructure evolution and property analysis. The precipitation of GP zone and AI3Li as well as the ultrafine grains were responsible for the high microhardness in the stir zone. 展开更多
关键词 probeless friction stir spot welding PRECIPITATION Mechanical property Fracture mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部