期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Adaptive Predefined-Time Attitude Tracking Control for Quadrotor Using a Novel Terminal Sliding Mode Approach
1
作者 Tianshuo Ge Tengshuo Dong +1 位作者 Baihai Zhang Fenxi Yao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期530-546,共17页
This paper proposes an adaptive predefined-time terminal sliding mode control(APTSMC)scheme for attitude tracking control of a quadrotor.To create this,an adaptive predefined-time stability controller based on a termi... This paper proposes an adaptive predefined-time terminal sliding mode control(APTSMC)scheme for attitude tracking control of a quadrotor.To create this,an adaptive predefined-time stability controller based on a terminal sliding mode is constructed.The upper bound of convergence time in the proposed scheme can be adjusted by the explicit parameters during the design process of the controller.In addition,it is proved that the attitude tracking error will converge within two periods of the preset time.These two periods are set between two ranges:From the initial values to the sliding mode surface and from the sliding mode surface to the region near the origin.Furthermore,an adaptive law is adopted to eliminate unknown external disturbances and the effects of the uncertainties in the quadrotor model,so it is unnecessary to require the prior knowledge of the upper bound of the perturbations.Simulation results are produced and comparative case studies are carried out to demonstrate that the proposed scheme has faster convergence speed and smaller tracking errors. 展开更多
关键词 predefined-time QUADROTOR attitude tracking control adaptive terminal sliding mode
在线阅读 下载PDF
Adaptive Predefined-Time Backstepping Control for Grid Connected Photovoltaic Inverter
2
作者 Jiarui Zhang Dan Liu +4 位作者 Kan Cao Ping Xiong Xiaotong Ji Yanze Xu Yunfei Mu 《Energy Engineering》 EI 2024年第8期2065-2083,共19页
The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backsteppin... The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter. 展开更多
关键词 Photovoltaic inverter system backstepping technology predefined-time control adaptive control
在线阅读 下载PDF
Distributed Adaptive Predefined-Time Bipartite Containment Algorithm for Nonlinear Multi-Agent Systems with Actuator Faults
3
作者 Honghao Wu 《Journal of Electronic Research and Application》 2024年第6期15-25,共11页
Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and dire... Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm. 展开更多
关键词 Actuator faults Adaptive bipartite containment control Nonlinear multi-agent systems predefined-time
在线阅读 下载PDF
Neural network based adaptive nonsingular practical predefined-time fault-tolerant control for hypersonic morphing aircraft 被引量:1
4
作者 Shihao XU Changzhu WEI +1 位作者 Litao ZHANG Rongjun MU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期421-435,共15页
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of pr... This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme. 展开更多
关键词 Hypersonic morphing aircraft(HMA) Neural network(NN) Adaptive control Practical predefined-time control Fault-tolerant control
原文传递
A Practical Predefined-Time Stability Criterion and Its Application to Uncertain Nonlinear Systems
5
作者 XU Hao YU Dengxiu +2 位作者 SUI Shuai XU Bowen CHEN C.L.Philip 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第6期2556-2578,共23页
In this paper,the singularity-free predefined-time fuzzy adaptive tracking control problem is studied for non-strict feedback(NSF)nonlinear systems considering mismatched external disturbances.An innovative practical ... In this paper,the singularity-free predefined-time fuzzy adaptive tracking control problem is studied for non-strict feedback(NSF)nonlinear systems considering mismatched external disturbances.An innovative practical predefined-time stability(PPTS)criterion is proposed to provide the theoretical basis for subsequent control design.Compared to the existing predefined-time stability(PTS)criterion,this criterion has a broader application range and can solve the control design issues of nonlinear systems with system uncertainties.Fuzzy logic systems(FLSs)are employed to identify unknown nonlinear functions.Based on the backstepping control technology,a singularity-free predefined-time control(PTC)design method is proposed,in which the hyperbolic tangent function is utilized to avoid the singular problem,and the nature of fuzzy basis function is adopted to resolve the algebraic loop problem.The PPTS of the closed-loop NSF nonlinear system is proven with the Lyapunov theory and the proposed PPTS criterion.Ultimately,the efficiency of the presented PTC design method is verified by several sets of simulations on a single link manipulator system. 展开更多
关键词 Fuzzy adaptive control nonlinear systems practical predefined-time stability predefinedtime control singularity-free control
原文传递
Event-triggered predefined-time control for full-state constrained nonlinear systems: A novel command filtering error compensation method
6
作者 PAN YingNan CHEN YiLin LIANG HongJing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第9期2867-2880,共14页
In this paper, a command filter-based adaptive fuzzy predefined-time event-triggered tracking control problem is investigated for uncertain nonlinear systems with time-varying full-state constraints. By designing a sl... In this paper, a command filter-based adaptive fuzzy predefined-time event-triggered tracking control problem is investigated for uncertain nonlinear systems with time-varying full-state constraints. By designing a sliding mode differentiator, the inherent computational complexity problem within the predefined-time backstepping framework is solved. Different from the existing command filter-based finite-time and fixed-time control strategies that the convergence time of the filtering error is adjusted through the system initial value or numerous parameters, a novel command filtering error compensation method is presented,which tunes one control parameter to make the filtering error converge in the predefined time, thereby reducing the complexity of design and analysis of processing the filtering error. Then, an improved event-triggered mechanism(ETM) that builds upon the switching threshold strategy, in which an inverse cotangent function is designed to replace the residual term of the ETM,is proposed to gradually release the controller's dependence on the residual term with increasing time. Furthermore, a tan-type nonlinear mapping technique is applied to tackle the time-varying full-state constraints problem. By the predefined-time stability theory, all signals in the uncertain nonlinear systems exhibit predefined-time stability. Finally, the feasibility of the proposed algorithm is substantiated through two simulation results. 展开更多
关键词 predefined-time control command filtering error compensation method event-triggered mechanism time-varying full-state constraints uncertain nonlinear systems
原文传递
Predefined-time bipartite tracking consensus for second-order multi-agent systems with cooperative and antagonistic networks
7
作者 Yuanhong Ren Zhiwen Chen +1 位作者 Yong Ji Zhiwei Li 《Journal of Control and Decision》 EI 2023年第2期280-292,共13页
This paper addresses the predefined-time bipartite tracking problem for second-order Multi-Agent Systems(MASs)with undirected signed topologies.A group of observers,which can estimate the state tracking errors for eac... This paper addresses the predefined-time bipartite tracking problem for second-order Multi-Agent Systems(MASs)with undirected signed topologies.A group of observers,which can estimate the state tracking errors for each follower in a pre-specified time,is proposed based on the time-varying function.In order to deal with the uncertainties caused by the unknown disturbances and the unknown input signal of the leader,we propose a predefined-time distributed control protocol based on the sliding mode control method.In addition,an auxiliary dynamic sliding variable is designed to reduce system chattering.Wetheoretically prove that the two control protocols can drive the state trajectories of each follower to reach the corresponding sliding surface within a specified time,and finally ensure that the prescribed-time bipartite tracking consensus is achieved for the MASs.Simulations are provided to verify the proposed schemes,and the simulation results further confirm the superiority of the adaptive control protocol. 展开更多
关键词 predefined-time tracking consensus bipartite consensus multi-agent systems prescribed-time observers adaptive dynamic sliding mode control
原文传递
Predefined-time controller design for a multiple space transportation robots system based on Lp-Norm-Normalized Sign Function
8
作者 Ran TAO Yibo DING +1 位作者 Hanyu LI Xiaokui YUE 《Chinese Journal of Aeronautics》 2025年第2期432-444,共13页
This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firs... This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time. 展开更多
关键词 Multiple space transportation robots system On-orbit assemblypredefined-time stability criterion Composite Lyapunov function Lp-Norm-Normalized Sign Function predefined-time controller
原文传递
Distributed predefined-time estimator-based affine formation target-enclosing maneuver control for cooperative underactuated quadrotor UAVs with fault-tolerant capabilities
9
作者 Yang XU Yuanfang QU +2 位作者 Delin LUO Haibin DUAN Zhengyu GUO 《Chinese Journal of Aeronautics》 2025年第1期471-490,共20页
The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aer... The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations. 展开更多
关键词 Affine formation maneuver control Target tracking Fixed-time control Quadrotor unmanned aerial vehicle Target enclosing predefined-time estimation
原文传递
General Lyapunov Stability and Its Application to Time-Varying Convex Optimization
10
作者 Zhibao Song Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2316-2326,共11页
In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settli... In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settling-time function is exhibited for fixedtime stability, and it is still extraneous to the initial conditions.This can be applied to obtain less conservative convergence time of the practical systems without the information of the initial conditions. As an application, the given fixed-time stability theorem is used to resolve time-varying(TV) convex optimization problem.By the Newton's method, two classes of new dynamical systems are constructed to guarantee that the solution of the dynamic system can track to the optimal trajectory of the unconstrained and equality constrained TV convex optimization problems in fixed time, respectively. Without the exact knowledge of the time derivative of the cost function gradient, a fixed-time dynamical non-smooth system is established to overcome the issue of robust TV convex optimization. Two examples are provided to illustrate the effectiveness of the proposed TV convex optimization algorithms. Subsequently, the fixed-time stability theory is extended to the theories of predefined-time/practical predefined-time stability whose bound of convergence time can be arbitrarily given in advance, without tuning the system parameters. Under which, TV convex optimization problem is solved. The previous two examples are used to demonstrate the validity of the predefined-time TV convex optimization algorithms. 展开更多
关键词 Fixed-time stability nonlinear system predefined-time stability time-varying(TV)convex optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部