期刊文献+
共找到2,047篇文章
< 1 2 103 >
每页显示 20 50 100
Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit
1
作者 Yun Zhang Zifen Han +2 位作者 Biao Tian Ning Chen Yi Fan 《Energy Engineering》 EI 2025年第1期167-184,共18页
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,... The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units. 展开更多
关键词 Photovoltaic power suppression hybrid energy storage unit variationalmodal decomposition fuzzy control power distribution control
在线阅读 下载PDF
Correlation Analysis of Power Quality and Power Spectrum in Wind Power Hybrid Energy Storage Systems
2
作者 Jian Gao Hongliang Hao +4 位作者 Caifeng Wen Yongsheng Wang Zhanhua Han Edwin E.Nykilla Yuwen Zhang 《Energy Engineering》 2025年第3期1175-1198,共24页
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship... Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications. 展开更多
关键词 Wind power generation hybrid energy storage power quality PSD NSGA-II
在线阅读 下载PDF
Online Optimization to Suppress the Grid-Injected Power Deviation of Wind Farms with Battery-Hydrogen Hybrid Energy Storage Systems
3
作者 Min Liu Qiliang Wu +4 位作者 Zhixin Li Bo Zhao Leiqi Zhang Junhui Li Xingxu Zhu 《Energy Engineering》 2025年第4期1403-1424,共22页
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy... To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency. 展开更多
关键词 Battery-hydrogen hybrid energy storage systems grid-injected power deviations measurement feedback online optimization energy states
在线阅读 下载PDF
A novel coordinated control strategy considering power smoothing for a hybrid photovoltaic/battery energy storage system 被引量:6
4
作者 DAUD Muhamad Zalani MOHAMED Azah HANNAN M A 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期394-404,共11页
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg... This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range. 展开更多
关键词 photovoltaic power smoothing battery energy storage state-of-charge control islanded microgrid
在线阅读 下载PDF
Research on Distributed Cooperative Control Strategy of Microgrid Hybrid Energy Storage Based on Adaptive Event Triggering 被引量:1
5
作者 Wenqian Zhang Jingwen Chen +2 位作者 Saleem Riaz Naiwen Zheng Li Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期585-604,共20页
Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,lead... Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy. 展开更多
关键词 DC microgrid hybrid energy storage adaptive event trigger distributed collaborative control
在线阅读 下载PDF
Wind Power Flow Optimization and Control System Based on Rapid Energy Storage 被引量:23
6
作者 ZHAO Yanlei LI Haidong +1 位作者 ZHANG Lei ZHANG Housheng 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0004-I0004,187,共1页
风电功率的间歇与波动致使电场容量可信度低、可调度性差;同时易引起局部电网的电压不稳、频率波动,影响了系统的电能质量及稳定性。针对此现象,将超级电容器与蓄电池组成快速储能装置,用于风电的潮流优化控制。采用三重双向直流变... 风电功率的间歇与波动致使电场容量可信度低、可调度性差;同时易引起局部电网的电压不稳、频率波动,影响了系统的电能质量及稳定性。针对此现象,将超级电容器与蓄电池组成快速储能装置,用于风电的潮流优化控制。采用三重双向直流变换电路控制储能元件间的功率流动;采用四象限交直流变换电路控制储能与电网间的能量交换。提出基于超级电容器电压低频波动抑制的功率分配方法,可显著减少蓄电池的充放次数;提出基于储能元件荷电状态的储能能量调整规则,可避免储能元件的过充和频繁深度放电,以优化其功率调节能力。实验结果表明,系统可实现2种储能元件的优势互补,能有效平滑调节风电注入电网的有功功率,并实时补偿控制风电接入点的无功功率。 展开更多
关键词 风力发电厂 控制系统 流程优化 储能 基础 电力系统 电能质量 低容量
在线阅读 下载PDF
Hybrid Power Systems Energy Controller Based on Neural Network and Fuzzy Logic 被引量:2
7
作者 Emad M. Natsheh Alhussein Albarbar 《Smart Grid and Renewable Energy》 2013年第2期187-197,共11页
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto... This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications. 展开更多
关键词 Artificial NEURAL Network energy Management Fuzzy control hybrid power Systems MAXIMUM power Point TRACKER Modeling
在线阅读 下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
8
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 Plug-In hybrid Electric Vehicle hybrid energy storage System HIGH energy BATTERY HIGH power BATTERY Electrical DOUBLE-LAYER CAPACITOR Lithium-Ion CAPACITOR
在线阅读 下载PDF
Research on the Hybrid Energy Storage based Photovoltaic Piconets and the Isolated Net Running Comprehensive Control System in the Campus Environment
9
作者 Xuejin Chen Dongyang Hu Huijing Cao Zhen Sha Sichen Xiong 《International Journal of Technology Management》 2015年第9期74-76,共3页
In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the... In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the efficient power supply without perfect stable control. Micro the early stage of network development related to micro network operation concepts are modeled on the control of large power system. Our proposed approach is proven to be effective and feasible through the numerical simulation and theoretical analysis which will be meaningful. 展开更多
关键词 hybrid energy storage Photovoltaic Piconets Isolated Net control System.
在线阅读 下载PDF
Towards Implementation of Smart Grid: An Updated Review on Electrical Energy Storage Systems 被引量:3
10
作者 Md Multan Biswas Md Shafiul Azim +2 位作者 Tonmoy Kumar Saha Umama Zobayer Monalisa Chowdhury Urmi 《Smart Grid and Renewable Energy》 2013年第1期122-132,共11页
A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been... A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world. 展开更多
关键词 BATTERY Distributed Generation hybrid energy storage Systems power QUALITY SMART GRID
在线阅读 下载PDF
An Advanced FMRL Controller for FACTS Devices to Enhance Dynamic Performance of Power Systems 被引量:1
11
作者 Abdellatif Naceri Habib Hamdaoui Mohamed Abid 《International Journal of Automation and computing》 EI 2011年第3期309-316,共8页
The parameters of power system slowly change with time due to environmental effects or may change rapidly due to faults. It is preferable that the control technique in this system possesses robustness for various faul... The parameters of power system slowly change with time due to environmental effects or may change rapidly due to faults. It is preferable that the control technique in this system possesses robustness for various fault conditions and disturbances. The used flexible alternating current transmission system (FACTS) in this paper is an advanced super-conducting magnetic energy storage (ASMES). Many control techniques that use ASMES to improve power system stability have been proposed. While fuzzy controller has proven its value in some applications, the researches applying fuzzy controller with ASMES have been actively reported. However, it is sometimes very difficult to specify the rule base for some plants, when the parameters change. To solve this problem, a fuzzy model reference learning controller (FMRLC) is proposed in this paper, which investigates multi-input multi-output FMRLC for time-variant nonlinear system. This control method provides the motivation for adaptive fuzzy control, where the focus is on the automatic online synthesis and tuning of fuzzy controller parameters (i.e., using online data to continually learn the fuzzy controller that will ensure that the performance objectives are met). Simulation results show that the proposed robust controller is able to work with nonlinear and nonstationary power system (i.e., single machine-infinite bus (SMIB) system), under various fault conditions and disturbances. 展开更多
关键词 Transient power system stability and robustness single machine-infinite bus (SMIB) system flexible alternating currenttransmission system (FACTS) advanced super-conducting magnetic energy storage (ASMES) fuzzy model reference learning controller(FMRLC) adaptive control learning controller.
在线阅读 下载PDF
Control strategy for energy recovery system in hybrid forklift
12
作者 龚俊 何清华 +3 位作者 张大庆 赵喻明 刘昌盛 唐中勇 《Journal of Central South University》 SCIE EI CAS 2014年第8期3119-3125,共7页
After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy ... After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system. 展开更多
关键词 hybrid power forklift truck energy recovery control strategy ultra capacitor
在线阅读 下载PDF
Hybrid Power System Options for Off-Grid Rural Electrification in Northern Kenya
13
作者 June M. Lukuyu Judith B. Cardell 《Smart Grid and Renewable Energy》 2014年第5期89-106,共18页
For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emis... For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%. 展开更多
关键词 hybrid power SYSTEM ofF-GRID power SYSTEM Wind energy Solar energy Battery storage MULTI-ATTRIBUTE Trade-off Analysis
在线阅读 下载PDF
An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation
14
作者 Diju Gao Shuai Li 《Energy Engineering》 2025年第4期1425-1442,共18页
To safeguard the ocean ecosystem,fuel cells are excellent candidates as the primary energy supply for marine vessels due to their high efficiency,low noise,and cleanliness.However,fuel cells in hybrid power systems ar... To safeguard the ocean ecosystem,fuel cells are excellent candidates as the primary energy supply for marine vessels due to their high efficiency,low noise,and cleanliness.However,fuel cells in hybrid power systems are highly susceptible to load transients,which can severely damage fuel cells and shorten their lifespan.Therefore,the formulation of energy management strategies accounting for power degradation is crucial and urgent.In this study,an improved strategy for equivalent consumption minimization strategy(ECMS)considering power degradation is proposed.The improved energy control strategy effectively controls the energy distribution of hydrogen fuel cells,lithium batteries,and supercapacitors in hybrid power ships.The proposed control strategy combines the ECMS with an adaptive filteringmethod.The main objective of the ECMS is to allocate power to the fuel cell systems and energy storage systems(ESS)to stabilize the power output of fuel cells,prolong their service life,and reduce the hydrogen consumption in fuel cells.The adaptive filteringmethod,by low-pass filtering of the energy in the energy storage system,is used to allocate power between lithium batteries and supercapacitors to minimize the effect of transient and peak energy output on the lifespan of lithium batteries.To verify the superiority of the control strategy,a mathematical model for the hybrid power system is developed.In comparison to traditional ECMS and traditional ECMS considering degradation,the improved ECMS considering power degradation shows better performance in the overall economy,the durability of fuel cells and batteries,and system dynamic performance. 展开更多
关键词 energy control strategy fuel cell hybrid power ships BATTERIES SUPERCAPACITORS
在线阅读 下载PDF
Control Scheme of Hybrid Wind-Diesel System with SMES Using NSGA-II
15
作者 Mohammed E. Lotfy Tomonobu Senjyu +2 位作者 Mohamed A. Farahat Amal F. Abdel-Gawad Atsuhi Yona 《Journal of Energy and Power Engineering》 2017年第3期204-213,共10页
Robust control approach of hybrid wind-diesel power system is proposed in this paper. PID (proportional integral derivative) controller is designed in the blade pitch system of wind turbine to improve the system dyn... Robust control approach of hybrid wind-diesel power system is proposed in this paper. PID (proportional integral derivative) controller is designed in the blade pitch system of wind turbine to improve the system dynamic performance. Furthermore, to minimize the system oscillations, SMES (super-conducting magnetic energy storage) with first order lead-lag controller is implemented to supply and absorb active power quickly trying to reach power generation/demand balance and thereby control system frequency. Minimization of frequency and wind output power deviations are considered as two objective functions for the PID controller of wind turbine. Also, mitigating frequency and diesel output power deviations are presented as two objective functions of the lead-lag controller of SMES. NSGA-II (modified version of non-dominated sorting genetic algorithm) is used to tune the controllers' parameters to get an optimal response. The effectiveness and robustness of the proposed control technique are investigated under different operating conditions using Matlab environment. The simulation results confirm the ability of the controllers to damp all frequency and output powers fluctuations and enhance the stability and reliability of the hybrid power system. 展开更多
关键词 Wind-diesel system isolated power system energy storage frequency control blade pitch control NSGA-II.
在线阅读 下载PDF
State-of-charge Balance Control and Safe Region Analysis for Distributed Energy Storage Systems with Constant Power Loads
16
作者 Yijing Wang Yangzhen Zhang +1 位作者 Zhiqiang Zuo Xialin Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1733-1745,共13页
This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (... This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy. 展开更多
关键词 Constant power load(CPL) distributed control distributed energy storage system(DESS) safe region state-of-charge(SoC)
原文传递
Spacecraft Attitude Tracking and Energy Storage Using Flywheels 被引量:3
17
作者 贾英宏 徐世杰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期1-7,共7页
The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A f... The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A feedback control law for attitude tracking is firstly developed by using Lyapunov approach, and then a torque based control law of the flywheel is studied. The control torque vector of the flywheel is decomposed into three parts which are orthogonal to one another by using the method of singularity value decomposition (SVD). One part is used to provide the attitude control torque, another part is used to store energy with given power, and the last part is used to accomplish wheel speed equalization to avoid wheel saturation caused by large difference among the wheel spin rates. A management scheme for energy storage power using kinetic energy feedback is proposed to keep energy balance, which can avoid wheel saturation caused by superfluous energy. Numerical simulation results demonstrate the effectiveness of the control scheme. 展开更多
关键词 integrated power and attitude control attitude tracking singular value decomposition energy storage FLYWHEEL
在线阅读 下载PDF
Research on power control strategy of household-level electric power router based on hybrid energy storage droop control 被引量:8
18
作者 Kun Huang Yanman Li +3 位作者 Xiaoyan Zhang Lei Liu Yanbin Zhu Xin Meng 《Protection and Control of Modern Power Systems》 2021年第1期178-190,共13页
In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process.... In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process. The system operating states are divided based on the DC bus voltage information with one converter used as a slack terminal to stabilize the DC bus voltage and the other converters as power terminals. In the on-grid mode, the GCC and the HES are used as the main control unit to achieve on-grid stable operation, whereas in the off-grid mode, the PV, HES and LC are used as the main control unit at different voltages to achieve stable operation of the island network. Finally, a DC MG system based on a household-level EPR is developed using the PSCAD / EMTDC simulation platform and the results show that the control strategy can effectively adjust the output of each subunit and maintain the stability of the DC bus voltage. 展开更多
关键词 Household-level electric power router hybrid energy storage Droop control On-grid mode off-grid mode
原文传递
Coordinated control strategy for a PV-storage grid-connected system based on a virtual synchronous generator 被引量:4
19
作者 Xing Zhang Qian Gao +3 位作者 Zixuan Guo Haizheng Zhang Ming Li Fei Li 《Global Energy Interconnection》 2020年第1期52-60,共9页
Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage... Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter. 展开更多
关键词 Photovoltaic power generation energy storage unit Virtual SYNCHRONOUS GENERATOR SMOOTH FLUCTUATION COORDINATED control
在线阅读 下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部