Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
Poly(silphenylene-siloxane)s had been synthesized through dehydrocarbon polycondensation of 1,4- bis(dimethylsilyl)benzene(BDSB)and dialkoxysilane.The polymer composition and structure was characterized by ^(29)Si-NMR...Poly(silphenylene-siloxane)s had been synthesized through dehydrocarbon polycondensation of 1,4- bis(dimethylsilyl)benzene(BDSB)and dialkoxysilane.The polymer composition and structure was characterized by ^(29)Si-NMR.The influence of temperature,B(C_6F_5)_3 concentration and monomer structure on the composition and the microstructure of the copolymers were investigated.It shows that elevating reaction temperature or using substrate (R O)_2R_2R_1Si with bulk organic group of R_1 or R_2 augments the run numb...展开更多
A valid experimental setup was proposed to study the wave transfer in PDMS fluids. It is found that the degree of attenuation in strain rate is greater with the increasing fluid viscosity, increasing vibration frequen...A valid experimental setup was proposed to study the wave transfer in PDMS fluids. It is found that the degree of attenuation in strain rate is greater with the increasing fluid viscosity, increasing vibration frequency, and increasing wave traveled distance.展开更多
Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxan...Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxane) (PMPS) in the presence of dimethyl carbonate has been studied. Morphology, particle size, surface area and coating microstructure of modified silicas were analyzed by methods of transmission electron and atomic force microscopies, nitrogen adsorption-desorption data. Carbon contents in the grafted modifying layer of organosilicas were determined using IR spectroscopy and elemental analysis. Hydrophilic-hydrophobic properties of surface of the obtained modified silicas were estimated by measurements of contact angles of wetting. It was shown that modification of pyrogenic silicas with mixtures of poly(methylphenylsiloxane) and dimethyl carbonate allows to obtain the homogeneous hydrophobic products and serve their nanodispersity.展开更多
Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate)(PETG)possesses excellent properties and stability than traditional poly(ethylene terephthalate)(PET).However,the production and application of PETG are ...Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate)(PETG)possesses excellent properties and stability than traditional poly(ethylene terephthalate)(PET).However,the production and application of PETG are restricted by the expensive monomer(1,4-cyclohexanedimethanol,CHDM).Direct upgrading of waste PET to dimethyl cyclohexane-1,4-dicarboxylate(DMCD)can promote the production of CHDM in large scale.In this work,a bifunctional Ru/UiO-66_(def)-SO_(3)H catalyst was synthesized and utilized in coupled methanolysis(of waste PET to dimethyl terephthalate(DMT))and hydrogenation(of DMT to DMCD)under mild condition.Characterizations revealed that Ru/UiO-66_(def)-SO_(3)H possessed mesopores(dominant channels of 2.72 and 3.44 nm),enlarged surface area(998 m^(2)·g^(–1)),enhanced acidity(580μmol·g^(–1)),and Ru nanoparticles(NPs)dispersed highly(45.1%)compared to those of Ru/UiO-66.These combined advantages could accelerate the methanolysis and hydrogenation reactions simultaneously,promoting the performance of direct upgrading of PET to DMCD in one pot.In particular,the conversion of PET and yield of DMCD over Ru/UiO-66_(def)-SO_(3)H reached 100%and 97.7%at 170℃and 3 MPa H_(2)within 6 h.Moreover,Ru/UiO-66_(def)-SO3H was also capable for the upcycling of waste PET-based products including beverage bottles,textile fiber and packaging film to DMCD.展开更多
A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithi...A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.展开更多
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is ...Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.展开更多
Poly(lithium propionate methyl siloxane )as a single-ion carrier source was synthesized. The crosslinked film showed lower lithium ionic conductivity at room temperature (about 10^(-10) S/cm). However,the lithium ioni...Poly(lithium propionate methyl siloxane )as a single-ion carrier source was synthesized. The crosslinked film showed lower lithium ionic conductivity at room temperature (about 10^(-10) S/cm). However,the lithium ionic conductivity was obviously increased by blending with high polar polymers such as polyethylene oxide, poly (methylsiloxane - co- ethylene oxide) and poly (methylsiloxane- g- ethylene oxide). In the blend system a high conductivity of 10^(-7)-10^(-5) Scm^(-1) at room temperature was obtained and the single-ion conductivity was deeply influenced by the content of the poly (lithium propionate methyl siioxane). The dc ionic conductivity of the flexible crosslinked films is more stable over time.展开更多
The effects of potassium ferricyanide,sodium n-dodecyl sulfate,sodium hydroxide and temperature on the molecular weight and the yield of poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) synthesized in an aqueous medium wer...The effects of potassium ferricyanide,sodium n-dodecyl sulfate,sodium hydroxide and temperature on the molecular weight and the yield of poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) synthesized in an aqueous medium were studied.It was found that oxygen in air had little influence on the oxidative polymerization of 2,6-dimethylphenol(DMP) in the aqueous medium,and potassium ferricyanide was only an oxidant during the oxidative polymerization of DMP.Sodium n-dodecyl sulfate could stabilize polymer particles an...展开更多
The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s me...The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40℃ ± 0.02℃. The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink-Sakurada and Stockmayer-Fixman. Conformational parameter C∞ and σ indicated 35PDMPA be semi flexible. Also, the rigidity of 35PDMPA was confirmed by Yamakawa-Fuji wormlike theory modified by Bohdanecky. The molecular parameters were estimated and compared. The results showed that 35PDMPA behaves like a semi-rigid polymer in toluene at 40℃ rather than a random coil flexible macromolecule.展开更多
The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical proces...The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.展开更多
Chloro ethane dimethyl sulfoxide,C_2H_5Cl·DMSO(ECI·DMSO)was prepared by interaction of acrylic acid with conc.Hydrochloric acid in dimethyl sulfoxide(DMSO)and subsequent decarboxylation with H_2O_2 solution....Chloro ethane dimethyl sulfoxide,C_2H_5Cl·DMSO(ECI·DMSO)was prepared by interaction of acrylic acid with conc.Hydrochloric acid in dimethyl sulfoxide(DMSO)and subsequent decarboxylation with H_2O_2 solution.The formation of the compound was confirmed by spectral and analytical methods;the molecular weight was determined by cryoscopic method.The solubility of poly(vinyl alcohol)(PVA)in different solvents or mixed solvents at 40℃,50℃and 60℃temperature in the presence of 0.01% of EC1·-DMSO was determined.It tu...展开更多
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
文摘Poly(silphenylene-siloxane)s had been synthesized through dehydrocarbon polycondensation of 1,4- bis(dimethylsilyl)benzene(BDSB)and dialkoxysilane.The polymer composition and structure was characterized by ^(29)Si-NMR.The influence of temperature,B(C_6F_5)_3 concentration and monomer structure on the composition and the microstructure of the copolymers were investigated.It shows that elevating reaction temperature or using substrate (R O)_2R_2R_1Si with bulk organic group of R_1 or R_2 augments the run numb...
文摘A valid experimental setup was proposed to study the wave transfer in PDMS fluids. It is found that the degree of attenuation in strain rate is greater with the increasing fluid viscosity, increasing vibration frequency, and increasing wave traveled distance.
文摘Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxane) (PMPS) in the presence of dimethyl carbonate has been studied. Morphology, particle size, surface area and coating microstructure of modified silicas were analyzed by methods of transmission electron and atomic force microscopies, nitrogen adsorption-desorption data. Carbon contents in the grafted modifying layer of organosilicas were determined using IR spectroscopy and elemental analysis. Hydrophilic-hydrophobic properties of surface of the obtained modified silicas were estimated by measurements of contact angles of wetting. It was shown that modification of pyrogenic silicas with mixtures of poly(methylphenylsiloxane) and dimethyl carbonate allows to obtain the homogeneous hydrophobic products and serve their nanodispersity.
文摘Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate)(PETG)possesses excellent properties and stability than traditional poly(ethylene terephthalate)(PET).However,the production and application of PETG are restricted by the expensive monomer(1,4-cyclohexanedimethanol,CHDM).Direct upgrading of waste PET to dimethyl cyclohexane-1,4-dicarboxylate(DMCD)can promote the production of CHDM in large scale.In this work,a bifunctional Ru/UiO-66_(def)-SO_(3)H catalyst was synthesized and utilized in coupled methanolysis(of waste PET to dimethyl terephthalate(DMT))and hydrogenation(of DMT to DMCD)under mild condition.Characterizations revealed that Ru/UiO-66_(def)-SO_(3)H possessed mesopores(dominant channels of 2.72 and 3.44 nm),enlarged surface area(998 m^(2)·g^(–1)),enhanced acidity(580μmol·g^(–1)),and Ru nanoparticles(NPs)dispersed highly(45.1%)compared to those of Ru/UiO-66.These combined advantages could accelerate the methanolysis and hydrogenation reactions simultaneously,promoting the performance of direct upgrading of PET to DMCD in one pot.In particular,the conversion of PET and yield of DMCD over Ru/UiO-66_(def)-SO_(3)H reached 100%and 97.7%at 170℃and 3 MPa H_(2)within 6 h.Moreover,Ru/UiO-66_(def)-SO3H was also capable for the upcycling of waste PET-based products including beverage bottles,textile fiber and packaging film to DMCD.
文摘A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.
基金the National High Technology Research and Development Program of China(No.2003AA321010).
文摘Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.
基金This work was supported by the National Natural Science Foundation of China
文摘Poly(lithium propionate methyl siloxane )as a single-ion carrier source was synthesized. The crosslinked film showed lower lithium ionic conductivity at room temperature (about 10^(-10) S/cm). However,the lithium ionic conductivity was obviously increased by blending with high polar polymers such as polyethylene oxide, poly (methylsiloxane - co- ethylene oxide) and poly (methylsiloxane- g- ethylene oxide). In the blend system a high conductivity of 10^(-7)-10^(-5) Scm^(-1) at room temperature was obtained and the single-ion conductivity was deeply influenced by the content of the poly (lithium propionate methyl siioxane). The dc ionic conductivity of the flexible crosslinked films is more stable over time.
基金supported by the National Natural Science Foundation of China(No.20674075)Natural ScienceFoundation of Zhejiang Province(No.Y404299)Young Talents Project of Zhejiang Province(No.2008R40G2010065).
文摘The effects of potassium ferricyanide,sodium n-dodecyl sulfate,sodium hydroxide and temperature on the molecular weight and the yield of poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) synthesized in an aqueous medium were studied.It was found that oxygen in air had little influence on the oxidative polymerization of 2,6-dimethylphenol(DMP) in the aqueous medium,and potassium ferricyanide was only an oxidant during the oxidative polymerization of DMP.Sodium n-dodecyl sulfate could stabilize polymer particles an...
文摘The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40℃ ± 0.02℃. The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink-Sakurada and Stockmayer-Fixman. Conformational parameter C∞ and σ indicated 35PDMPA be semi flexible. Also, the rigidity of 35PDMPA was confirmed by Yamakawa-Fuji wormlike theory modified by Bohdanecky. The molecular parameters were estimated and compared. The results showed that 35PDMPA behaves like a semi-rigid polymer in toluene at 40℃ rather than a random coil flexible macromolecule.
基金the National High Technology Research and Development Program of China(No 2003AA321010)
文摘The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.
文摘Chloro ethane dimethyl sulfoxide,C_2H_5Cl·DMSO(ECI·DMSO)was prepared by interaction of acrylic acid with conc.Hydrochloric acid in dimethyl sulfoxide(DMSO)and subsequent decarboxylation with H_2O_2 solution.The formation of the compound was confirmed by spectral and analytical methods;the molecular weight was determined by cryoscopic method.The solubility of poly(vinyl alcohol)(PVA)in different solvents or mixed solvents at 40℃,50℃and 60℃temperature in the presence of 0.01% of EC1·-DMSO was determined.It tu...