期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Point cloud upsampling generative adversarial network based on residual multi-scale off-set attention 被引量:1
1
作者 Bin SHEN Li LI +3 位作者 Xinrong HU Shengyi GUO Jin HUANG Zhiyao LIANG 《Virtual Reality & Intelligent Hardware》 2023年第1期81-91,共11页
Background Owing to the limitations of the working principle of three-dimensional(3D) scanning equipment, the point clouds obtained by 3D scanning are usually sparse and unevenly distributed. Method In this paper, we ... Background Owing to the limitations of the working principle of three-dimensional(3D) scanning equipment, the point clouds obtained by 3D scanning are usually sparse and unevenly distributed. Method In this paper, we propose a new generative adversarial network(GAN) that extends PU-GAN for upsampling of point clouds. Its core architecture aims to replace the traditional self-attention(SA) module with an implicit Laplacian offset attention(OA) module and to aggregate the adjacency features using a multiscale offset attention(MSOA)module, which adaptively adjusts the receptive field to learn various structural features. Finally, residual links are added to create our residual multiscale offset attention(RMSOA) module, which utilizes multiscale structural relationships to generate finer details. Result The results of several experiments show that our method outperforms existing methods and is highly robust. 展开更多
关键词 point cloud upsampling Generative adversarial network ATTENTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部