A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. ...A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.展开更多
The influences of different impregnation temperatures,pre-oxidation,carbonization temperatures and activation conditions on the iodine value and carbon deviations was discussed.SEM,EDS,and BET techniques were used to ...The influences of different impregnation temperatures,pre-oxidation,carbonization temperatures and activation conditions on the iodine value and carbon deviations was discussed.SEM,EDS,and BET techniques were used to investigate the microstructures and properties of materials.Results showed that activated carbon functional ceramic exhibited excellent comprehensive properties when porous ceramics adsorbed the coal pitch at 150 ℃ for 0.5 h,oxidized at 420 ℃ for 1.0 h,and carbonizated at 700 ℃ for 1.0 h and then activated by using KOH(20wt%) as agent at 800 ℃ for 1.0 h,as confirmed by the high iodine value(162.6 mg/g) and high specific surface area(83.5 m2/g).展开更多
The macro-and micro-structure of two groups(high modulus and high thermalconductivity)of MP-based carbon fibres were studied using X-ray diffraction,and both scanningand transmission electron microscopy.The dominant m...The macro-and micro-structure of two groups(high modulus and high thermalconductivity)of MP-based carbon fibres were studied using X-ray diffraction,and both scanningand transmission electron microscopy.The dominant macrostructure in cross section is of foldedpseudo-radial layers which have a tendency to form a quasi-uniform domain as the fibre modulusincreases.It is found that high thermal conductivity fibres have both missimg sector and circularcross sections(possessed predominantly by the high modulus fibre group).The microstructuralstudy indicates that apart from the fibre C700,which has a three-dimensional graphite structure,these two groups of carbon fibres all exhibit a turbostratic stacking order.Furthermore it is foundthat the turbostratic stacking thickness as determined from dark-field measurement is much largerthan the classical crystallite thickness L_c as measured from X-ray diffraction.展开更多
The oxidation resistance of isotropic pitch-based carbon fibers are sudied by thermogravimetric analysis,scanning electron microscope and mechanical propefties measure. The change of weight loss,microtextule and mecha...The oxidation resistance of isotropic pitch-based carbon fibers are sudied by thermogravimetric analysis,scanning electron microscope and mechanical propefties measure. The change of weight loss,microtextule and mechanical properties on condition of thermostatical oxidation and nonisothermal oxidation are separately mainly discussed.The results during isothermic oxidation at 316℃ showed that the weight loss of isotropic pitch-based carbon fiber increased and the strength, module rapidly decreased with prolongation of time, but the surface of carbon fiber is smoother and has not surface such as etching pits etc. The weight of isotropic pitch-based carbon fiber decreased more rapidly during the experiment of thermo-variable weight loss after 500℃ than before 500℃.展开更多
Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typ...Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typical defects.Meanwhile,tear is more obvious than burr,and more entrance tears emerge than exit tears.As one of the major causes of entrance and exit defects in CPOD,cutting forces were substaintially studied by contrast experiments.Then,the effect of cutting parameters on entrance and exit tear was qualitatively analyzed through a single factor test.Experiment results indicate that the variation of rotation speed has little influence on entrance and exit tear.Increasing tangential feed per tooth can enlarge entrance tear,but bring little effect on exit tear.By increasing axial feed pitch,the hole entrance and exit show severe tear.When revolution radius grows bigger and bigger,entrance and exit tear firstly decreases,and then increases.Finally,the models of tear and delamination during CPOD of CFRP were established,the formation mechanisms of entrance and exit defects were revealed,and the control strategies were accordingly put forward.展开更多
A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate...A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate causes the electric field around the CNT tops to be concentrated and the emission electron beam becomes a column. The field enhancement factor and the emission current intensity step up greatly compared with those of the diode structure. Emission current density increases rapidly with the decrease of normal-gate aperture. The gate voltage exerts a critical influence on the emission current.展开更多
Conventional resin bonded MgO-C bricks, which are manufactured via cold mixing process, harden and attain brittleness during carbonization of resin due to the formation of isotropic glassy carbon. They do not exhibit ...Conventional resin bonded MgO-C bricks, which are manufactured via cold mixing process, harden and attain brittleness during carbonization of resin due to the formation of isotropic glassy carbon. They do not exhibit thermo-plasticity, which can facilitate the release of huge amount of stresses generated during preheating or in operation. On the contrary, pitch bonded MgO-C bricks, show better pyro-plasticity due to formation of an anisotropic and graphitized coke structure during carbonization of pitch. Hence, pitch bonded bricks show a superior structural spalling resistance in comparison to resin-bonded bricks. One of the drawbacks of pitch-bonded bricks is that the manufacturing requires a hot mixing process and hot pressing facility. This paper describes how a combination of above two processes was optimized to make a MgO-C brick via cold process. These bricks exhibit a low Modulus of Elasticity and thereby facilitate release of stresses during operation. Normal coal tar pitch is considered as an environmental hazard due to the presence of polyaromatic hydrocarbons like benzopyrene B [ a ] P. So, a special binder with a low B[ a ] P was selected, which is eco-friendly in nature. Such bricks were made in our plant in China and supplied to an integrated steel plant in Europe for their ladle. The bricks supplied have given encouraging life.展开更多
基金Supported by the National Natural Science Foundation of China(51472086,51002051)CAS Key Laboratory of Carbon Materials(No KLCMKFJJ1703)
文摘A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.
基金sponsored by Fujian Scientific and Technological Department (Nos.2004I003 and 2006N0037)
文摘The influences of different impregnation temperatures,pre-oxidation,carbonization temperatures and activation conditions on the iodine value and carbon deviations was discussed.SEM,EDS,and BET techniques were used to investigate the microstructures and properties of materials.Results showed that activated carbon functional ceramic exhibited excellent comprehensive properties when porous ceramics adsorbed the coal pitch at 150 ℃ for 0.5 h,oxidized at 420 ℃ for 1.0 h,and carbonizated at 700 ℃ for 1.0 h and then activated by using KOH(20wt%) as agent at 800 ℃ for 1.0 h,as confirmed by the high iodine value(162.6 mg/g) and high specific surface area(83.5 m2/g).
文摘The macro-and micro-structure of two groups(high modulus and high thermalconductivity)of MP-based carbon fibres were studied using X-ray diffraction,and both scanningand transmission electron microscopy.The dominant macrostructure in cross section is of foldedpseudo-radial layers which have a tendency to form a quasi-uniform domain as the fibre modulusincreases.It is found that high thermal conductivity fibres have both missimg sector and circularcross sections(possessed predominantly by the high modulus fibre group).The microstructuralstudy indicates that apart from the fibre C700,which has a three-dimensional graphite structure,these two groups of carbon fibres all exhibit a turbostratic stacking order.Furthermore it is foundthat the turbostratic stacking thickness as determined from dark-field measurement is much largerthan the classical crystallite thickness L_c as measured from X-ray diffraction.
文摘The oxidation resistance of isotropic pitch-based carbon fibers are sudied by thermogravimetric analysis,scanning electron microscope and mechanical propefties measure. The change of weight loss,microtextule and mechanical properties on condition of thermostatical oxidation and nonisothermal oxidation are separately mainly discussed.The results during isothermic oxidation at 316℃ showed that the weight loss of isotropic pitch-based carbon fiber increased and the strength, module rapidly decreased with prolongation of time, but the surface of carbon fiber is smoother and has not surface such as etching pits etc. The weight of isotropic pitch-based carbon fiber decreased more rapidly during the experiment of thermo-variable weight loss after 500℃ than before 500℃.
基金supported in part by the Major Project of the Ministry of Science and Technology of China(No.2012ZX04003-031)the Innovation Project of Jiangsu Province(No.2016-05)
文摘Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typical defects.Meanwhile,tear is more obvious than burr,and more entrance tears emerge than exit tears.As one of the major causes of entrance and exit defects in CPOD,cutting forces were substaintially studied by contrast experiments.Then,the effect of cutting parameters on entrance and exit tear was qualitatively analyzed through a single factor test.Experiment results indicate that the variation of rotation speed has little influence on entrance and exit tear.Increasing tangential feed per tooth can enlarge entrance tear,but bring little effect on exit tear.By increasing axial feed pitch,the hole entrance and exit show severe tear.When revolution radius grows bigger and bigger,entrance and exit tear firstly decreases,and then increases.Finally,the models of tear and delamination during CPOD of CFRP were established,the formation mechanisms of entrance and exit defects were revealed,and the control strategies were accordingly put forward.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50873047)the Foundation of Gansu Provincial Education Department,China (Grant No. 0603-02)
文摘A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate causes the electric field around the CNT tops to be concentrated and the emission electron beam becomes a column. The field enhancement factor and the emission current intensity step up greatly compared with those of the diode structure. Emission current density increases rapidly with the decrease of normal-gate aperture. The gate voltage exerts a critical influence on the emission current.
文摘Conventional resin bonded MgO-C bricks, which are manufactured via cold mixing process, harden and attain brittleness during carbonization of resin due to the formation of isotropic glassy carbon. They do not exhibit thermo-plasticity, which can facilitate the release of huge amount of stresses generated during preheating or in operation. On the contrary, pitch bonded MgO-C bricks, show better pyro-plasticity due to formation of an anisotropic and graphitized coke structure during carbonization of pitch. Hence, pitch bonded bricks show a superior structural spalling resistance in comparison to resin-bonded bricks. One of the drawbacks of pitch-bonded bricks is that the manufacturing requires a hot mixing process and hot pressing facility. This paper describes how a combination of above two processes was optimized to make a MgO-C brick via cold process. These bricks exhibit a low Modulus of Elasticity and thereby facilitate release of stresses during operation. Normal coal tar pitch is considered as an environmental hazard due to the presence of polyaromatic hydrocarbons like benzopyrene B [ a ] P. So, a special binder with a low B[ a ] P was selected, which is eco-friendly in nature. Such bricks were made in our plant in China and supplied to an integrated steel plant in Europe for their ladle. The bricks supplied have given encouraging life.