In order to explore the method of returning corn stalk into field, the effects of returning corn stalk direcfly into soil and applying corn stalk-composted orgar^c fertilizer into soil on the physiochemical properties...In order to explore the method of returning corn stalk into field, the effects of returning corn stalk direcfly into soil and applying corn stalk-composted orgar^c fertilizer into soil on the physiochemical properties of tobacco-growing soil were studied. The results showed that returning corn stalk into soil could reduce soil bulk density and increase soil porosity, so as to improve the water and fertilizer retention capacity of tobacco-growing soil. At the same time, returning corn stalk into soil could also increase the organic matter, available phosphorus and available potassi- um contents in tobacco-growing soil. In the early field growth stage of tobacco, soil alkali-hydrolyzable nitrogen content decreased slightly; but in the middle and later field growth stage, the alkali-hydrolyzable nitrogen content in tobacco-growing soil increased. The treatment effect of corn stalk+urea+fermentation bacteria and corn stalk+urea+BM was better than that of the control (returning corn stalk directly into soil), indicating that the corn stalk-composted organic fertilizer had certain popular- ization value.展开更多
Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increas...Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increasing coking problems, thereby raising concern to the refiner. This work investigated effect of nickel coexisting with vanadium in the FCC feedstock on the standard FCC catalyst during cracking process, in which destruction of active sites occurs as a result of the metals deposition. Laboratory simulated equilibrium catalysts (E-cats) were studied by XRD, FTIR spectroscopy, N-2 adsorption, solid state MAS-NMR, SEM and H-2-TPR. Results revealed that vanadium, above a certain concentration in the catalyst, under hydrothermal conditions, is highly detrimental to the catalyst's structure and activity. Conversely, nickel hardly affects the catalyst structure, but its co-presence in the catalyst reduces destructive effects of vanadium. The mechanism of nickel inhibition of vanadium poisoning of the catalyst is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and acce...With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.展开更多
Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasion...Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasions on soil,we compared topsoil physiochemical properties at sites with invasive alien tree species(Prosopis juliflora),native tree species(Prosopis cineraria,Acacia tortilis,and Acacia ehrenbergiana),and mixed tree species in Hormozgan Province of Iran in May 2018.In this study,we collected 40 soil samples at a depth of 10 cm under single tree species,including P.juliflora,P.cineraria,A.tortilis,and A.ehrenbergiana,as well as under mixed tree species.The results showed that organic matter,moisture,potassium,calcium,nitrogen,and magnesium in topsoil at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria were higher than that at sites where P.juliflora was present(P<0.05).Sodium at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria and P.juliflora was lower as compared to that at sites with just A.tortilis and A.ehrenbergiana.Electrical conductivity was lower at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria,and it was higher at sites with mixed Acacia and P.juliflora trees.Based on the generally more positive effect of native Acacia and P.cineraria on topsoil physiochemical properties as compared to the P.julifora,afforestation with native tree species is preferable for soil restoration.In addition,due to the negative effects of P.julifora on soil properties,P.julifora spread should be better managed.展开更多
Objective:To study detail microscopic evaluation and physiochemical analysis of Dillenia indica(D.indica)leaf.Methods:Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically.Prel...Objective:To study detail microscopic evaluation and physiochemical analysis of Dillenia indica(D.indica)leaf.Methods:Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically.Preliminary phytochemical investigation of plant material was done.Other WHO recommended parameters for standardizations were also performed.Results:The detail microscopy revealed the presence of anomocytic stomata,unicellular trichome,xylem fibres,calcium oxalate crystals,vascular bundles,etc.Leaf constants such as stomatal number,stomatal index,vein-islet number and veinlet termination numbers were also measured.Physiochemical parameters such as ash values,loss on drying,extractive values,percentage of foreign matters,swelling index,etc.were also determined.Preliminary phytochemical screening showed the presence of steroids,terpenoids,glycosides,fatty acids,flavonoids,phenolic compounds and carbohydrates.Conclusions:The microscopic and physiochemical analysis of the D.indica leaf is useful in standardization for quality,purity and sample identification.展开更多
This work quantitatively evaluates the level and impact of selected physiochemical properties of fertilizer effluent on the Obinna River of Adani, Enugu State, Nigeria. The fertilizer effluent originated from surround...This work quantitatively evaluates the level and impact of selected physiochemical properties of fertilizer effluent on the Obinna River of Adani, Enugu State, Nigeria. The fertilizer effluent originated from surrounding farms and flushed into the Obinna River. Water samples were collected from designated points along the river and analysed for physical, chemical and biological properties using standard methods of APHA. Impact of selected key parameters such as nitrate, phosphate, manganese, dissolved oxygen, biochemical oxygen demand and heavy metals (lead, iron and manganese), was studied. The results of the parameters were compared with the World Health Organisation (WHO) permissible standard for freshwater. Measured concentrations of phosphate (5.00, 7.21, 3.92 mg/L), manganese (1.53, 1.18, 1.47 mg/L) and lead (18.9, 21.7, 39.7 ppm) were found to be above the WHO standard while nitrate (0.04, 0.03, 0.03 mg/L) and iron (0.001, 0.001, 0.1 mg/L) were within the standard. The mean concentrations of heavy metals increased in the following order: Fe (0.034) 1 to downstream S3, with manganese and lead being above WHO standard. The results showed a level of significance for the chi-square distribution and correlation coefficients while the analysis of variance (ANOVA) results was conflicting. It could be inferred that the impact of the selected parameters contributed to the pollution of Obinna River.展开更多
The effect of cement on physiochemical properties of three types of soils i.e garden soil, agricultural soil and roadside soil was investigated. The ordinary Portland cement was used. The amount of cement added to soi...The effect of cement on physiochemical properties of three types of soils i.e garden soil, agricultural soil and roadside soil was investigated. The ordinary Portland cement was used. The amount of cement added to soil samples, as dry mass percentage was 20%. The results of analysis showed that the addition of cement is capable of bringing about changes in physiochemical properties of soil. The electrical conductivity and organic matter content in three soils get decreased by the addition of cement. While the pH, bulk density and water holding capacity of soils after the addition of cement gets increased. The soil found most suitable to be treated with cement was roadside soil. It was concluded that cement can be used to change the physiochemical properties of soil and this technique has great utility in improving the quality of problematic soils.展开更多
Fruit bagging is a commonly used cultivation measure to protect citrus fruit from insects and adverse environments.The present study aimed to comprehensively investigate the effects of bagging on the physiochemical ch...Fruit bagging is a commonly used cultivation measure to protect citrus fruit from insects and adverse environments.The present study aimed to comprehensively investigate the effects of bagging on the physiochemical characteristics of grapefruit.The grapefruit were bagged at approximately 110–120 d after anthesis with a one-layer kraft paper bag with black coating inside(SL),a double-layer kraft paper bag with one black paper as the inner layer(DL),and a three-layer kraft paper bag with two black papers as inner layers(TL),respectively.Ultra performance liquid chromatography-high resolution mass spectrometry(UPLC-HRMS)technique was used to identify a total of 19 flavonoids,2 phenylpropanoids,9 coumarins,and 5 limonoids.By using UPLC,50 carotenoids were identified.Gas chromatography–mass spectrometry was used to identify 3 soluble sugars,3 organic acids,and 11 amino acids.In the quantitated components in the peel(albedo and flavedo),the chlorophylls and the carotenoids components(such as luteoxanthin,violaxanthin,9-cis-violaxanthin,xanthophyll,zeaxanthin andβ-carotene)were significantly downregulated by bagging,causing the surface color of bagged fruit to turn yellow earlier but paler than that of the unbagged control,particularly in the three-layer kraft bag treatment.Unlike the peel,the color and the carotenoid content of the juice sacs were less affected.The physiochem-ical compounds other than pigments,including soluble sugars,organic acids,amino acids,flavonoids,coumarins and limonoids,were minimally affected by bagging treatments.Our results indicated that bagging at approximately 110–120 d after anthesis exerted influence mainly on peel color,but less on sugars,acids,amino acids,flavonoids,limonoids and coumarins of grapefruit.展开更多
Coconut oil contains a rich amount of medium-chain fatty acids,including lauric acid,decanoic acid,and octanoic acid,as well as the corresponding medium-chain triglycerides.It possesses functional attributes such as f...Coconut oil contains a rich amount of medium-chain fatty acids,including lauric acid,decanoic acid,and octanoic acid,as well as the corresponding medium-chain triglycerides.It possesses functional attributes such as facile digestion and absorption,as well as antibacterial and antioxidant properties.The study utilized the Citespace and VOSviewer visual analysis software to examine the quantity of published papers,authors,publishing institutions,research hotspots and frontiers of 3442 effective literatures on the theme of"coconut oil"in the Web of Science(WoS)Core Collection database.The research on coconut oil can be condensed into four primary sections:(1)investigation and utilization of physiochemical characteristics of coconut oil,(2)analysis of nutritional composition and study of the effectiveness of coconut oil,(3)identification of adulteration in coconut oil,(4)evaluation of the impact of coconut oil as a dietary supplement on animal metabolism.Additionally,research focal points have evolved in three distinct phases.Prior to 2008,numerous studies were conducted to investigate the precise fatty acid makeup of coconut oil and its potential for lowering cholesterol levels.From 2009 to 2016,significant emphasis was placed on examining the impact of coconut oil on methane production in ruminants.Between 2018 to 2023,the main focus will be on investigating how nanoparticles can alter the properties of coconut oil.In the future,the anticipated research areas of interest are expected to focus on the rapid detection method of coconut oil,the efficacy of coconut oil and the advancement of coconut resources.The objective of this review is to provide researchers with relevant information about coconut oil,aiming to foster the continued growth of the coconut oil industry.展开更多
A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in lab...A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.展开更多
[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different ...[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.展开更多
Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic di...Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic digestion(AD)as a classical bio-wastes conversion technology,suffers from inhibitions,process instability,and methanogenic inefficiency which limit its efficiency.With the advantages of pH buffering,functional microbes enrichment,inhibitors alleviating,and direct interspecies electron transfer(DIET)accelerating,biochar suggests a promising application as additives for AD.Herein,this paper reviewed the noting physicochemical properties of biochar,and discussed its roles and related mechanisms in AD.Further,this paper highlighted the advantages and drawbacks,and pointed out the corresponding challenges and prospects for future research and application of biochar amending AD.展开更多
The main objective of the research is to assess the role of foliar application of silicon(Si)for enhancing the survival ability of wheat under drought stress through improving its morphology,physicochemical and antiox...The main objective of the research is to assess the role of foliar application of silicon(Si)for enhancing the survival ability of wheat under drought stress through improving its morphology,physicochemical and antioxidants activities.Treatments were five doses of Si at the rate of 2,4,6 and 8 mM and a control.After completion of seeds germination,pots were divided into four distinct groups at various field capacity(FC)levels,such as 100%FC(well-irrigated condition),75%FC(slight water deficit),50%FC(modest water deficit)and 25%FC(severe water deficit stress condition).Foliar application of Si at the rate of 2,4,6 and 8 mM and a control were given after 30 days of sowing at the tillering stage of wheat.Findings of the present investigation indicated that increasing the level of water deficit stress reduced the morphological parameters(such as root and shoot fresh and dry-biomass weight)and physico-biochemical events((such as chlorophyll contents by estimating SPAD value),total free amino acid(TFAA),total soluble sugar(TSS),total soluble protein(TSP),total proline(TP),CAT(catalase),POD(peroxidase),SOD(superoxide dismutase)and APX(ascorbate peroxidase))of wheat;while foliar application of Si at 6 mM at tillering stage enhanced the drought tolerance in wheat by increasing morphology and physiochemical characters under all levels of drought stress.Similarly,antioxidants activities in wheat also enhanced by the application of Si at 6 mM under normal as well as all drought stress levels.There-fore,it may be concluded that foliar application of Si at 6 mM at the tillering stage of wheat is an important indication for increasing the drought tolerance by improving the morphology,physico-biochemical and antioxidants activities in plants under deficit water(drought)conditions.展开更多
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistan...To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.展开更多
Theophylline(TP)is a very well established orally or intravenously delivered antiasthma drug with many beneficial effects.This study aims to improve asthma treatment by creating a dry powder inhalable(DPI)formulation ...Theophylline(TP)is a very well established orally or intravenously delivered antiasthma drug with many beneficial effects.This study aims to improve asthma treatment by creating a dry powder inhalable(DPI)formulation of TP to be delivered directly to the lung,avoiding the side effects associated with conventional oral delivery.The DPI TP formulation was investigated for its physico-chemical characteristics using scanning electron microscopy,laser diffraction,thermal analysis and dynamic vapour sorption.Furthermore,aerosol performance was assessed using the Multi Stage Liquid Impinger(MSLI).In addition,a Calu-3 cell transport assay was conducted in vitro using a modified ACI to study the impact of the DPI formulation on lung epithelial cells.Results showed DPI TP to be physico-chemically stable and of an aerodynamic size suitable for lung delivery.The aerosolisation performance analysis showed the TP DPI formulation to have a fine particle fraction of 29.70±2.59%(P<0.05)for the TP formulation containing 1.0%(w/w)sodium stearate,the most efficient for aerosolisation.Regarding the deposition of TP DPI on Calu-3 cells using the modified ACI,results demonstrated that 56.14±7.62%of the total TP deposited(13.07±1.69μg)was transported across the Calu-3 monolayer over 180 min following deposition,while 37.05±12.62%of the deposited TP was retained in the cells.This could be due to the presence of sodium stearate in the current formulation that increased its lipophilicity.A DPI formulation of TP was developed that was shown to be suitable for inhalation.展开更多
New mixed ligand chelates synthesized from di-and trivalent metal ions (Cr, Co, Ni, and Cu ions) and Schiff base (L1) resulted from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol as primary ligand,...New mixed ligand chelates synthesized from di-and trivalent metal ions (Cr, Co, Ni, and Cu ions) and Schiff base (L1) resulted from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol as primary ligand, whereas 2-nitroaniline (L2) represents the secondary ligand in a molar ratio of M:L1:L2 [1:1:1]. The synthesized Schiff base and chelates have been characterized by using several tools, such as, elemental analysis, molar conductivity, magnetic moment measurements, infrared and electronic spectra. The mass spectra of the ligands and Ni(II) chelate were used to justify the process of modification, as well as, the electron paramagnetic resonance spectrum which was carried out for Cu(II) chelate all in order to elucidate the chemical and geometrical structure of the chelates. On the basis of the obtained data, the geometry of the products was proposed for all the chelates.展开更多
Objective:To present a detailed pharmacognostic study of the leaf of Cayratia trifolia(C.trifolia)Linn.(Vitaceae),an important plant in the Indian system of medicine.Methods:The macroscopy,microscopy,physiochemical an...Objective:To present a detailed pharmacognostic study of the leaf of Cayratia trifolia(C.trifolia)Linn.(Vitaceae),an important plant in the Indian system of medicine.Methods:The macroscopy,microscopy,physiochemical analysis,preliminary testing,fluorescence analysis of powder of the plant and other WHO recommended methods for standardization were investigated.Results:Leaves are trifoliolated with petioles(2-3 cm)long.Leaflets are ovate to oblong-ovate,(2-8 cm)long,(1.5-5 cm)wide,pointed at the tip.The leaf surface shows the anisocytic type stomata covered with guard cells followed by epidermis layer.Leaf surface contents including veins.vein islet and vein termination were also determined.Transverse section of leaf shows the epidermis layer followed by cuticle layer and vascular bandies(xylem and phloem).The mesophyll is differentiated into palisade and spongy parenchyma.Abundant covering trichomes emerge from the upper epidermis.Trichomes are uniseriate and multicellular.Strips of collenchyma are present below and upper layer of epidermis.Conclusions:It can be concluded that the pharmacognostic profile of the C.trifolia is helpful in developing standards for quality,purity and sample identification.展开更多
Objective: To evaluate the effect of marine brown alga Sargassum polycystum extract on growth and biochemical parameters of Vigna radiata and Vigna mungo. Methods: Different concentrations of algal extracts (0.5%, 1.0...Objective: To evaluate the effect of marine brown alga Sargassum polycystum extract on growth and biochemical parameters of Vigna radiata and Vigna mungo. Methods: Different concentrations of algal extracts (0.5%, 1.0%, 2.0%, 3.0%, 4.0%, and 5.0%) were prepared and applied to the crops at every 10-day intervals under natural conditions. After 30 d, the plants were harvested to evaluate the growth and biochemical parameters. Results: Seaweed liquid fertilizers treated seedlings showed maximum growth in 3.0% concentration when compared to the untreated seedlings. Similarly, biochemical parameters such as photosynthetic pigments, protein, reducing sugar, total sugar and amino acids exhibited increases in 3.0%concentration seaweed extract. Decreases in growth and biochemical parameters were noticed in concentrations higher than 3.0%. Conclusions: Presence of micronutrients and growth regulating substances in the liquid extract help healthier and faster productivity of the crop.展开更多
Pakistani wheat varieties are grown over a wide agro-climatic range and as such are anticipated to exhibit yield and quality differences. It is therefore necessary to investigate the nutritional status of wheat variet...Pakistani wheat varieties are grown over a wide agro-climatic range and as such are anticipated to exhibit yield and quality differences. It is therefore necessary to investigate the nutritional status of wheat varieties in terms of biochemical and physiochemical characteristics available for food and nutritional purposes in Pakistan. The result shows that wheat grains of different varieties contain a net protein level of 9.15%~10.27%, 2.15%~2.55% total fats, 1.72%~1.85% dietary fibers, 77.65×10-6~84.25×10-6 of potassium and 7.70×10-6~35.90×10-6 of sodium ions concentration, 0.24×10-6~0.84×10-6 of phosphorus, 1.44%~2.10% ash, 31.108~43.602 g of thousand grain mass (TGM) and 8.38%~9.67% moisture contents. This study is significant in providing an opportunity to explore the available wheat varieties and to further improve their nutritional excellence and also essential for setting nutritional regulations for domestic and export purposes.展开更多
As a result of immense industrialisation and high population growth, groundwater is heavily relied on in Lagos metropolis to serve as an alternative source of water where surface water is seriously polluted. The conti...As a result of immense industrialisation and high population growth, groundwater is heavily relied on in Lagos metropolis to serve as an alternative source of water where surface water is seriously polluted. The continued reliance on ground water has resulted in its decline in quantity and quality. In this study, the coastal aquifers of Lagos metropolis were selected for an assessment of its groundwater quality and impact of saline intrusion. Water samples collected along the coastal region were subjected to various physicochemical analyses. Results obtained were compared with permissible values for drinking water stated by Federal Environmental Protection Agency (FEPA) and World Health Organization (WHO). The results revealed that all the water samples were significantly hard (range 522.14 – 1233.34mg/L). The salinity was delineated by conductivity measurements. Three samples had specific conductance above the stated limits for fresh water. The samples however met the stipulated limits for drinking water for the other tested parameters.展开更多
文摘In order to explore the method of returning corn stalk into field, the effects of returning corn stalk direcfly into soil and applying corn stalk-composted orgar^c fertilizer into soil on the physiochemical properties of tobacco-growing soil were studied. The results showed that returning corn stalk into soil could reduce soil bulk density and increase soil porosity, so as to improve the water and fertilizer retention capacity of tobacco-growing soil. At the same time, returning corn stalk into soil could also increase the organic matter, available phosphorus and available potassi- um contents in tobacco-growing soil. In the early field growth stage of tobacco, soil alkali-hydrolyzable nitrogen content decreased slightly; but in the middle and later field growth stage, the alkali-hydrolyzable nitrogen content in tobacco-growing soil increased. The treatment effect of corn stalk+urea+fermentation bacteria and corn stalk+urea+BM was better than that of the control (returning corn stalk directly into soil), indicating that the corn stalk-composted organic fertilizer had certain popular- ization value.
基金financially supported by the Joint Funds of the National Natural Science Foundation of ChinaChina National Petroleum Corporation(U1362202)+4 种基金National Natural Science Foundation of China(21206195)the Fundamental Research Funds for the Central Universities(14CX02050A,14CX02123A)Shandong Provincial Natural Science Foundation(ZR2012BM014)the project sponsored by Scientific Research Foundation for Returned Overseas Chinese Scholarthe support from Chinese Government under the Chinese scholarship scheme for international students
文摘Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increasing coking problems, thereby raising concern to the refiner. This work investigated effect of nickel coexisting with vanadium in the FCC feedstock on the standard FCC catalyst during cracking process, in which destruction of active sites occurs as a result of the metals deposition. Laboratory simulated equilibrium catalysts (E-cats) were studied by XRD, FTIR spectroscopy, N-2 adsorption, solid state MAS-NMR, SEM and H-2-TPR. Results revealed that vanadium, above a certain concentration in the catalyst, under hydrothermal conditions, is highly detrimental to the catalyst's structure and activity. Conversely, nickel hardly affects the catalyst structure, but its co-presence in the catalyst reduces destructive effects of vanadium. The mechanism of nickel inhibition of vanadium poisoning of the catalyst is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the Chinese Ministry of Agriculture(Grant No.2016ZX08001006)Science Technology Department of Zhejiang Province,China(Grant Nos.2016C02052-6,C02058-4,2017C02019 and 2018C02055)。
文摘With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.
文摘Biological invasions can alter soil properties within the range of their introduced,leading to impacts on ecosystem services,ecosystem functions,and biodiversity.To better understand the impacts of biological invasions on soil,we compared topsoil physiochemical properties at sites with invasive alien tree species(Prosopis juliflora),native tree species(Prosopis cineraria,Acacia tortilis,and Acacia ehrenbergiana),and mixed tree species in Hormozgan Province of Iran in May 2018.In this study,we collected 40 soil samples at a depth of 10 cm under single tree species,including P.juliflora,P.cineraria,A.tortilis,and A.ehrenbergiana,as well as under mixed tree species.The results showed that organic matter,moisture,potassium,calcium,nitrogen,and magnesium in topsoil at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria were higher than that at sites where P.juliflora was present(P<0.05).Sodium at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria and P.juliflora was lower as compared to that at sites with just A.tortilis and A.ehrenbergiana.Electrical conductivity was lower at sites with A.tortilis and A.ehrenbergiana growing in combination with P.cineraria,and it was higher at sites with mixed Acacia and P.juliflora trees.Based on the generally more positive effect of native Acacia and P.cineraria on topsoil physiochemical properties as compared to the P.julifora,afforestation with native tree species is preferable for soil restoration.In addition,due to the negative effects of P.julifora on soil properties,P.julifora spread should be better managed.
基金Supported by Career Award for Young Teachers.AICTE.New Delhi.(No.1-51/RID/CA/4/2009-10)
文摘Objective:To study detail microscopic evaluation and physiochemical analysis of Dillenia indica(D.indica)leaf.Methods:Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically.Preliminary phytochemical investigation of plant material was done.Other WHO recommended parameters for standardizations were also performed.Results:The detail microscopy revealed the presence of anomocytic stomata,unicellular trichome,xylem fibres,calcium oxalate crystals,vascular bundles,etc.Leaf constants such as stomatal number,stomatal index,vein-islet number and veinlet termination numbers were also measured.Physiochemical parameters such as ash values,loss on drying,extractive values,percentage of foreign matters,swelling index,etc.were also determined.Preliminary phytochemical screening showed the presence of steroids,terpenoids,glycosides,fatty acids,flavonoids,phenolic compounds and carbohydrates.Conclusions:The microscopic and physiochemical analysis of the D.indica leaf is useful in standardization for quality,purity and sample identification.
文摘This work quantitatively evaluates the level and impact of selected physiochemical properties of fertilizer effluent on the Obinna River of Adani, Enugu State, Nigeria. The fertilizer effluent originated from surrounding farms and flushed into the Obinna River. Water samples were collected from designated points along the river and analysed for physical, chemical and biological properties using standard methods of APHA. Impact of selected key parameters such as nitrate, phosphate, manganese, dissolved oxygen, biochemical oxygen demand and heavy metals (lead, iron and manganese), was studied. The results of the parameters were compared with the World Health Organisation (WHO) permissible standard for freshwater. Measured concentrations of phosphate (5.00, 7.21, 3.92 mg/L), manganese (1.53, 1.18, 1.47 mg/L) and lead (18.9, 21.7, 39.7 ppm) were found to be above the WHO standard while nitrate (0.04, 0.03, 0.03 mg/L) and iron (0.001, 0.001, 0.1 mg/L) were within the standard. The mean concentrations of heavy metals increased in the following order: Fe (0.034) 1 to downstream S3, with manganese and lead being above WHO standard. The results showed a level of significance for the chi-square distribution and correlation coefficients while the analysis of variance (ANOVA) results was conflicting. It could be inferred that the impact of the selected parameters contributed to the pollution of Obinna River.
文摘The effect of cement on physiochemical properties of three types of soils i.e garden soil, agricultural soil and roadside soil was investigated. The ordinary Portland cement was used. The amount of cement added to soil samples, as dry mass percentage was 20%. The results of analysis showed that the addition of cement is capable of bringing about changes in physiochemical properties of soil. The electrical conductivity and organic matter content in three soils get decreased by the addition of cement. While the pH, bulk density and water holding capacity of soils after the addition of cement gets increased. The soil found most suitable to be treated with cement was roadside soil. It was concluded that cement can be used to change the physiochemical properties of soil and this technique has great utility in improving the quality of problematic soils.
基金supported by the Basic Public Welfare Research Program of Zhejiang Province(LGN19C200022)and the Fundamental Research Funds for the Central Universities,Science and Technology Innovation Team of the Ministry of Agriculture and Rural Affairs,China.
文摘Fruit bagging is a commonly used cultivation measure to protect citrus fruit from insects and adverse environments.The present study aimed to comprehensively investigate the effects of bagging on the physiochemical characteristics of grapefruit.The grapefruit were bagged at approximately 110–120 d after anthesis with a one-layer kraft paper bag with black coating inside(SL),a double-layer kraft paper bag with one black paper as the inner layer(DL),and a three-layer kraft paper bag with two black papers as inner layers(TL),respectively.Ultra performance liquid chromatography-high resolution mass spectrometry(UPLC-HRMS)technique was used to identify a total of 19 flavonoids,2 phenylpropanoids,9 coumarins,and 5 limonoids.By using UPLC,50 carotenoids were identified.Gas chromatography–mass spectrometry was used to identify 3 soluble sugars,3 organic acids,and 11 amino acids.In the quantitated components in the peel(albedo and flavedo),the chlorophylls and the carotenoids components(such as luteoxanthin,violaxanthin,9-cis-violaxanthin,xanthophyll,zeaxanthin andβ-carotene)were significantly downregulated by bagging,causing the surface color of bagged fruit to turn yellow earlier but paler than that of the unbagged control,particularly in the three-layer kraft bag treatment.Unlike the peel,the color and the carotenoid content of the juice sacs were less affected.The physiochem-ical compounds other than pigments,including soluble sugars,organic acids,amino acids,flavonoids,coumarins and limonoids,were minimally affected by bagging treatments.Our results indicated that bagging at approximately 110–120 d after anthesis exerted influence mainly on peel color,but less on sugars,acids,amino acids,flavonoids,limonoids and coumarins of grapefruit.
基金This study is supported by the Key Laboratory for Deep Processing of Major Grain and Oil,Ministry of Education(Wuhan Polytechnic University)(No.DZLY2022008)Hubei Key Laboratory for Processing and Transformation of Agricultural Products(Wuhan Polytechnic University)(No.NJZ2022008).
文摘Coconut oil contains a rich amount of medium-chain fatty acids,including lauric acid,decanoic acid,and octanoic acid,as well as the corresponding medium-chain triglycerides.It possesses functional attributes such as facile digestion and absorption,as well as antibacterial and antioxidant properties.The study utilized the Citespace and VOSviewer visual analysis software to examine the quantity of published papers,authors,publishing institutions,research hotspots and frontiers of 3442 effective literatures on the theme of"coconut oil"in the Web of Science(WoS)Core Collection database.The research on coconut oil can be condensed into four primary sections:(1)investigation and utilization of physiochemical characteristics of coconut oil,(2)analysis of nutritional composition and study of the effectiveness of coconut oil,(3)identification of adulteration in coconut oil,(4)evaluation of the impact of coconut oil as a dietary supplement on animal metabolism.Additionally,research focal points have evolved in three distinct phases.Prior to 2008,numerous studies were conducted to investigate the precise fatty acid makeup of coconut oil and its potential for lowering cholesterol levels.From 2009 to 2016,significant emphasis was placed on examining the impact of coconut oil on methane production in ruminants.Between 2018 to 2023,the main focus will be on investigating how nanoparticles can alter the properties of coconut oil.In the future,the anticipated research areas of interest are expected to focus on the rapid detection method of coconut oil,the efficacy of coconut oil and the advancement of coconut resources.The objective of this review is to provide researchers with relevant information about coconut oil,aiming to foster the continued growth of the coconut oil industry.
基金The study was supported by PPI/PPIC China Program (No. HB-19) and Wetland Laboratory Opening Foundation of Hubei Province (No. HNKFJ20021301).
文摘A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.
文摘[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.
基金supported by the National Natural Science Foundation of China(NSFC 51806243)and the China Scholarship Council Grant(#201908040007).
文摘Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic digestion(AD)as a classical bio-wastes conversion technology,suffers from inhibitions,process instability,and methanogenic inefficiency which limit its efficiency.With the advantages of pH buffering,functional microbes enrichment,inhibitors alleviating,and direct interspecies electron transfer(DIET)accelerating,biochar suggests a promising application as additives for AD.Herein,this paper reviewed the noting physicochemical properties of biochar,and discussed its roles and related mechanisms in AD.Further,this paper highlighted the advantages and drawbacks,and pointed out the corresponding challenges and prospects for future research and application of biochar amending AD.
文摘The main objective of the research is to assess the role of foliar application of silicon(Si)for enhancing the survival ability of wheat under drought stress through improving its morphology,physicochemical and antioxidants activities.Treatments were five doses of Si at the rate of 2,4,6 and 8 mM and a control.After completion of seeds germination,pots were divided into four distinct groups at various field capacity(FC)levels,such as 100%FC(well-irrigated condition),75%FC(slight water deficit),50%FC(modest water deficit)and 25%FC(severe water deficit stress condition).Foliar application of Si at the rate of 2,4,6 and 8 mM and a control were given after 30 days of sowing at the tillering stage of wheat.Findings of the present investigation indicated that increasing the level of water deficit stress reduced the morphological parameters(such as root and shoot fresh and dry-biomass weight)and physico-biochemical events((such as chlorophyll contents by estimating SPAD value),total free amino acid(TFAA),total soluble sugar(TSS),total soluble protein(TSP),total proline(TP),CAT(catalase),POD(peroxidase),SOD(superoxide dismutase)and APX(ascorbate peroxidase))of wheat;while foliar application of Si at 6 mM at tillering stage enhanced the drought tolerance in wheat by increasing morphology and physiochemical characters under all levels of drought stress.Similarly,antioxidants activities in wheat also enhanced by the application of Si at 6 mM under normal as well as all drought stress levels.There-fore,it may be concluded that foliar application of Si at 6 mM at the tillering stage of wheat is an important indication for increasing the drought tolerance by improving the morphology,physico-biochemical and antioxidants activities in plants under deficit water(drought)conditions.
基金supported by the Key Project of Developing Agriculture through Science and Technology of Shanghai Municipal Agricultural Commission,China(Grant No.2010-1-1)Shanghai Science and Technology Development Funds,China(Grant No.11QA1405900)the National High-Tech Research and Development Program of China(Grant No.2012AA101102)
文摘To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.
基金Professor Young is the recipient of an Australian Research Council Future Fellowship(project number FT110100996)Associate Professor Traini is the recipient of an Australian Research Council Future Fellowship(project number FT12010063).
文摘Theophylline(TP)is a very well established orally or intravenously delivered antiasthma drug with many beneficial effects.This study aims to improve asthma treatment by creating a dry powder inhalable(DPI)formulation of TP to be delivered directly to the lung,avoiding the side effects associated with conventional oral delivery.The DPI TP formulation was investigated for its physico-chemical characteristics using scanning electron microscopy,laser diffraction,thermal analysis and dynamic vapour sorption.Furthermore,aerosol performance was assessed using the Multi Stage Liquid Impinger(MSLI).In addition,a Calu-3 cell transport assay was conducted in vitro using a modified ACI to study the impact of the DPI formulation on lung epithelial cells.Results showed DPI TP to be physico-chemically stable and of an aerodynamic size suitable for lung delivery.The aerosolisation performance analysis showed the TP DPI formulation to have a fine particle fraction of 29.70±2.59%(P<0.05)for the TP formulation containing 1.0%(w/w)sodium stearate,the most efficient for aerosolisation.Regarding the deposition of TP DPI on Calu-3 cells using the modified ACI,results demonstrated that 56.14±7.62%of the total TP deposited(13.07±1.69μg)was transported across the Calu-3 monolayer over 180 min following deposition,while 37.05±12.62%of the deposited TP was retained in the cells.This could be due to the presence of sodium stearate in the current formulation that increased its lipophilicity.A DPI formulation of TP was developed that was shown to be suitable for inhalation.
文摘New mixed ligand chelates synthesized from di-and trivalent metal ions (Cr, Co, Ni, and Cu ions) and Schiff base (L1) resulted from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol as primary ligand, whereas 2-nitroaniline (L2) represents the secondary ligand in a molar ratio of M:L1:L2 [1:1:1]. The synthesized Schiff base and chelates have been characterized by using several tools, such as, elemental analysis, molar conductivity, magnetic moment measurements, infrared and electronic spectra. The mass spectra of the ligands and Ni(II) chelate were used to justify the process of modification, as well as, the electron paramagnetic resonance spectrum which was carried out for Cu(II) chelate all in order to elucidate the chemical and geometrical structure of the chelates. On the basis of the obtained data, the geometry of the products was proposed for all the chelates.
基金Supported by a grant from University Grants Committee,New Delhi(grant No.39-955/2010 SR)
文摘Objective:To present a detailed pharmacognostic study of the leaf of Cayratia trifolia(C.trifolia)Linn.(Vitaceae),an important plant in the Indian system of medicine.Methods:The macroscopy,microscopy,physiochemical analysis,preliminary testing,fluorescence analysis of powder of the plant and other WHO recommended methods for standardization were investigated.Results:Leaves are trifoliolated with petioles(2-3 cm)long.Leaflets are ovate to oblong-ovate,(2-8 cm)long,(1.5-5 cm)wide,pointed at the tip.The leaf surface shows the anisocytic type stomata covered with guard cells followed by epidermis layer.Leaf surface contents including veins.vein islet and vein termination were also determined.Transverse section of leaf shows the epidermis layer followed by cuticle layer and vascular bandies(xylem and phloem).The mesophyll is differentiated into palisade and spongy parenchyma.Abundant covering trichomes emerge from the upper epidermis.Trichomes are uniseriate and multicellular.Strips of collenchyma are present below and upper layer of epidermis.Conclusions:It can be concluded that the pharmacognostic profile of the C.trifolia is helpful in developing standards for quality,purity and sample identification.
文摘Objective: To evaluate the effect of marine brown alga Sargassum polycystum extract on growth and biochemical parameters of Vigna radiata and Vigna mungo. Methods: Different concentrations of algal extracts (0.5%, 1.0%, 2.0%, 3.0%, 4.0%, and 5.0%) were prepared and applied to the crops at every 10-day intervals under natural conditions. After 30 d, the plants were harvested to evaluate the growth and biochemical parameters. Results: Seaweed liquid fertilizers treated seedlings showed maximum growth in 3.0% concentration when compared to the untreated seedlings. Similarly, biochemical parameters such as photosynthetic pigments, protein, reducing sugar, total sugar and amino acids exhibited increases in 3.0%concentration seaweed extract. Decreases in growth and biochemical parameters were noticed in concentrations higher than 3.0%. Conclusions: Presence of micronutrients and growth regulating substances in the liquid extract help healthier and faster productivity of the crop.
基金Project (No. HEC/FD/2007/670) supported by the Higher EducationCommission (HEC), Pakistan
文摘Pakistani wheat varieties are grown over a wide agro-climatic range and as such are anticipated to exhibit yield and quality differences. It is therefore necessary to investigate the nutritional status of wheat varieties in terms of biochemical and physiochemical characteristics available for food and nutritional purposes in Pakistan. The result shows that wheat grains of different varieties contain a net protein level of 9.15%~10.27%, 2.15%~2.55% total fats, 1.72%~1.85% dietary fibers, 77.65×10-6~84.25×10-6 of potassium and 7.70×10-6~35.90×10-6 of sodium ions concentration, 0.24×10-6~0.84×10-6 of phosphorus, 1.44%~2.10% ash, 31.108~43.602 g of thousand grain mass (TGM) and 8.38%~9.67% moisture contents. This study is significant in providing an opportunity to explore the available wheat varieties and to further improve their nutritional excellence and also essential for setting nutritional regulations for domestic and export purposes.
文摘As a result of immense industrialisation and high population growth, groundwater is heavily relied on in Lagos metropolis to serve as an alternative source of water where surface water is seriously polluted. The continued reliance on ground water has resulted in its decline in quantity and quality. In this study, the coastal aquifers of Lagos metropolis were selected for an assessment of its groundwater quality and impact of saline intrusion. Water samples collected along the coastal region were subjected to various physicochemical analyses. Results obtained were compared with permissible values for drinking water stated by Federal Environmental Protection Agency (FEPA) and World Health Organization (WHO). The results revealed that all the water samples were significantly hard (range 522.14 – 1233.34mg/L). The salinity was delineated by conductivity measurements. Three samples had specific conductance above the stated limits for fresh water. The samples however met the stipulated limits for drinking water for the other tested parameters.