期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Hybrid Model for Short-term PV Output Forecasting Based on PCA-GWO-GRNN 被引量:20
1
作者 Leijiao Ge Yiming Xian +2 位作者 Jun Yan Bo Wang Zhongguan Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1268-1275,共8页
High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,a... High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,and economic operation of PV systems.This paper proposes a hybrid model based on principal component analysis,grey wolf optimization and generalized regression neural network(PCA-GWO-GRNN)for day-ahead short-term PV output forecasting,considering the features of multiple influencing factors and strong uncertainty.This paper first uses the PCA to reduce the dimension of meteorological features.Then,the high-precision day-ahead short-term PV output forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after dimension reduction,and the parameter of GRNN is optimized by using GWO,which has strong global searching ability and fast convergence.The proposed PCA-GWO-GRNN model effectively achieves a high precision in day-ahead shortterm PV output forecasting,which is demonstrated in a case study on a real PV plant in Jiangsu province,China.The results have validated the accuracy and applicability of the proposed model in real scenarios. 展开更多
关键词 photovoltaic output forecasting principal component analysis(PCA) grey wolf optimization(GWO) generalized regression neural network(GRNN)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部