This paper presents a modeling method by stochastic Petri net for reliability analysis of phased mission system( PMS) with phase backup. The model consisting of petri nets,depicts the system behaviors of unit level,sy...This paper presents a modeling method by stochastic Petri net for reliability analysis of phased mission system( PMS) with phase backup. The model consisting of petri nets,depicts the system behaviors of unit level,system logic level and phase level. Guard functions of petri nets are used to avoid modeling complexity and make the model flexible to different reliability logical structures. It was shown that the time redundancy within phase and from phase backup for PMS can both be described by use of the proposed model.展开更多
Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, ...Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.展开更多
A comprehensive mission sensitivity analysis index based on Sobol's index called global mission sensitivity( GMS) was proposed in this paper which focused on analyzing the mission sensitivity of components of phas...A comprehensive mission sensitivity analysis index based on Sobol's index called global mission sensitivity( GMS) was proposed in this paper which focused on analyzing the mission sensitivity of components of phased mission systems( PMS). The simulation strategy of GMS based on a Petri net and Monte Carlo method was presented which had broad applicability. Finally,the GMS and Birnbaum's sensitivity of components in a PMS example were compared. The GMS of component is demonstrated to be more adaptable to reflect the component mission sensitivity when the rated reliability parameters of components cannot be obtained, and components have state dependency or the system is subjected to common cause failure.展开更多
Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages...Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.展开更多
This paper presents a simplified Markov model to evaluate the reliability of phased-mission system(PMS). The time cost and storage requirement are very huge for traditional Markov model to analyze the PMS reliability ...This paper presents a simplified Markov model to evaluate the reliability of phased-mission system(PMS). The time cost and storage requirement are very huge for traditional Markov model to analyze the PMS reliability as the number of components increases to a large scale. The states merging method proposed in this paper can account for the PMS with subsystems consisting of identical components, and similar PMSs are common in real-world systems. The simplified Markov model by states merging has smaller number of system states, compared with the traditional one. Furthermore, for the above subsystems, the size of our model increases only linearly as the number of components increases, while the size of the traditional model exponentially increases.Finally, the effectiveness and correctness of our approach are analyzed by comparing with the traditional Markov method.展开更多
基金Nationd Natural Science Foundation of China(No.71671185)
文摘This paper presents a modeling method by stochastic Petri net for reliability analysis of phased mission system( PMS) with phase backup. The model consisting of petri nets,depicts the system behaviors of unit level,system logic level and phase level. Guard functions of petri nets are used to avoid modeling complexity and make the model flexible to different reliability logical structures. It was shown that the time redundancy within phase and from phase backup for PMS can both be described by use of the proposed model.
基金supported by the Natural Science Foundation of China(61174156 61273189+5 种基金 61174035 61374179 U1435218 6140340171401168)the Army Equipment Research Foundation(012016012600B12507)
文摘Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.
基金National Natural Science Foundation of China(No.71071159)
文摘A comprehensive mission sensitivity analysis index based on Sobol's index called global mission sensitivity( GMS) was proposed in this paper which focused on analyzing the mission sensitivity of components of phased mission systems( PMS). The simulation strategy of GMS based on a Petri net and Monte Carlo method was presented which had broad applicability. Finally,the GMS and Birnbaum's sensitivity of components in a PMS example were compared. The GMS of component is demonstrated to be more adaptable to reflect the component mission sensitivity when the rated reliability parameters of components cannot be obtained, and components have state dependency or the system is subjected to common cause failure.
基金Supported by National Outstanding Youth Science Foundation of China (No.79725002)
文摘Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.
基金the National Natural Science Foundation of China(No.71401172)
文摘This paper presents a simplified Markov model to evaluate the reliability of phased-mission system(PMS). The time cost and storage requirement are very huge for traditional Markov model to analyze the PMS reliability as the number of components increases to a large scale. The states merging method proposed in this paper can account for the PMS with subsystems consisting of identical components, and similar PMSs are common in real-world systems. The simplified Markov model by states merging has smaller number of system states, compared with the traditional one. Furthermore, for the above subsystems, the size of our model increases only linearly as the number of components increases, while the size of the traditional model exponentially increases.Finally, the effectiveness and correctness of our approach are analyzed by comparing with the traditional Markov method.