Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
This paper reports results of the authors’ studies on the virtual design method used in the development of low noise intake system of I.C. engine. The resulting high pass-by noise at level above the legislative targe...This paper reports results of the authors’ studies on the virtual design method used in the development of low noise intake system of I.C. engine. The resulting high pass-by noise at level above the legislative target at full throttle when engine speed was around 5200 r/min necessitated a BEM-aided redesign task, following the typical process of design and development of an intake system. During the initial design, based on the acoustic theory and the requirements (1. The air flux of the redesigned should equal to or exceed the value of the original flux; 2. The filtering area must not be degraded), and considering the constraint of space in the engine compartment, total volume and rough internal dimensions were determined. During the detailed design, the exact internal dimensions of the air cleaner were determined, and an effective method was applied to improve the acoustic performance at low frequency. The predicted sound power of the intake system indicated that the objective of reducing the overall engine noise by minimizing intake system noise was achieved.展开更多
The influence of each factor on the reaction of geopolymers material was investigated by using the orthogonal experimental design method, which got the optimal condition of reaction. Based on this results the performa...The influence of each factor on the reaction of geopolymers material was investigated by using the orthogonal experimental design method, which got the optimal condition of reaction. Based on this results the performances of geopolymers were investigated. The results are as follows: (1) The effect of each factor on the compressive strength of geopolymers was different; (2) For paste the optimal condition of reaction is that the modulus and the concentration of sodium silicate solution are 1.2 and 40%, the calcined temperature and calcined time of kaolin are 800 ℃ and 2 h, and the liquid-solid ratio is 1.25; (3) When the pH value of solution is higher than l, the compressive strength of Geopolymers will not decrease as that in the water; (4) As the calcined temperature of samples were lower than 700 ℃ the heat-resistant of geopolymers was good;(5) Geopolymers is unlikely to react with the active aggregate.展开更多
The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine...The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine. However, unreasonable design in the control schedule causes not only performance deterioration but also serious aerodynamic stability problems. Thus, in this work,a hybrid optimization method that automatically chooses the working modes and identifies the optimal and smooth control schedules is proposed, by combining the differential evolution algorithm and the Latin hypercube sampling method. The control schedule architecture does not only optimize the engine steady-state performance under different working modes but also solves the control-schedule discontinuity problem, especially during mode transition. The optimal control schedules are continuous and almost monotonic, and hence are strongly suitable for a control system, and are designed for two different working conditions, i.e., supersonic and subsonic throttling,which proves that the proposed hybrid method applies to various working conditions. The evaluation demonstrates that the proposed control method optimizes the engine performance, the surge margin of the compression components, and the range of the thrust during throttling.展开更多
The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucke...The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.展开更多
Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy dens...Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.展开更多
In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC ...In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC is not yet applied for drug quality control in the daily routine framework. Among the numerous reported SFC methods, none of them could be found to fully satisfy to all steps of the analytical method lifecycle. Thereby, the present contribution aims to provide an overview of the current and past achievements related to SFC techniques, with a targeted attention to this lifecycle and its successive steps. The included discussions were therefore structured accordingly and emphasizing the analytical method lifecycle in accord with the International Conference on Harmonisation (ICH). Recent and important scientific outputs in the field of analytical SFC, as well as instrumental evolution, qualification strategies, method development methodologies and discussions on the topic of method validation are reviewed.展开更多
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
文摘This paper reports results of the authors’ studies on the virtual design method used in the development of low noise intake system of I.C. engine. The resulting high pass-by noise at level above the legislative target at full throttle when engine speed was around 5200 r/min necessitated a BEM-aided redesign task, following the typical process of design and development of an intake system. During the initial design, based on the acoustic theory and the requirements (1. The air flux of the redesigned should equal to or exceed the value of the original flux; 2. The filtering area must not be degraded), and considering the constraint of space in the engine compartment, total volume and rough internal dimensions were determined. During the detailed design, the exact internal dimensions of the air cleaner were determined, and an effective method was applied to improve the acoustic performance at low frequency. The predicted sound power of the intake system indicated that the objective of reducing the overall engine noise by minimizing intake system noise was achieved.
基金Funded by Guangzhou Technical Guide Project(No.2004-D038)
文摘The influence of each factor on the reaction of geopolymers material was investigated by using the orthogonal experimental design method, which got the optimal condition of reaction. Based on this results the performances of geopolymers were investigated. The results are as follows: (1) The effect of each factor on the compressive strength of geopolymers was different; (2) For paste the optimal condition of reaction is that the modulus and the concentration of sodium silicate solution are 1.2 and 40%, the calcined temperature and calcined time of kaolin are 800 ℃ and 2 h, and the liquid-solid ratio is 1.25; (3) When the pH value of solution is higher than l, the compressive strength of Geopolymers will not decrease as that in the water; (4) As the calcined temperature of samples were lower than 700 ℃ the heat-resistant of geopolymers was good;(5) Geopolymers is unlikely to react with the active aggregate.
基金funded by National Nature Science Foundation of China(Nos.51776010 and 91860205)supported by the Academic Excellence Foundation of BUAA for PhD Students,China。
文摘The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine. However, unreasonable design in the control schedule causes not only performance deterioration but also serious aerodynamic stability problems. Thus, in this work,a hybrid optimization method that automatically chooses the working modes and identifies the optimal and smooth control schedules is proposed, by combining the differential evolution algorithm and the Latin hypercube sampling method. The control schedule architecture does not only optimize the engine steady-state performance under different working modes but also solves the control-schedule discontinuity problem, especially during mode transition. The optimal control schedules are continuous and almost monotonic, and hence are strongly suitable for a control system, and are designed for two different working conditions, i.e., supersonic and subsonic throttling,which proves that the proposed hybrid method applies to various working conditions. The evaluation demonstrates that the proposed control method optimizes the engine performance, the surge margin of the compression components, and the range of the thrust during throttling.
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2012AA041801)supported by the National High Technology Research and Development Program of China+1 种基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2013CB035401)supported by the National Basic Research Program of China。
文摘The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.
基金the National Natural Science Foundation of China(51973157,51673148 and 51678411)the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(2020 T130469)+1 种基金the China Postdoctoral Science Foundation Grant(2019 M651047)the Science and Technology Plans of Tianjin(No.17PTSYJC00040 and18PTSYJC00180)for their financial support。
文摘Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.
文摘In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC is not yet applied for drug quality control in the daily routine framework. Among the numerous reported SFC methods, none of them could be found to fully satisfy to all steps of the analytical method lifecycle. Thereby, the present contribution aims to provide an overview of the current and past achievements related to SFC techniques, with a targeted attention to this lifecycle and its successive steps. The included discussions were therefore structured accordingly and emphasizing the analytical method lifecycle in accord with the International Conference on Harmonisation (ICH). Recent and important scientific outputs in the field of analytical SFC, as well as instrumental evolution, qualification strategies, method development methodologies and discussions on the topic of method validation are reviewed.