In this numerical study,the effect of quartic autocatalysis type of chemical reaction,buoyancy force and thermal radiation phenomenon and magnetic effect on tangent hyperbolic nanofluid past an upper horizontal surfac...In this numerical study,the effect of quartic autocatalysis type of chemical reaction,buoyancy force and thermal radiation phenomenon and magnetic effect on tangent hyperbolic nanofluid past an upper horizontal surface of a paraboloid has been studied.By considering the Buongiorno model approach,a diffusion of unequal coefficients in the presence of gyrotactic microorganism is discussed.Implementation of microorganism’s idea is used to stabilize the nanoparticles through bioconvection.The modeled PDEs of the problems are converted into nonlinear ODEs with the assistant of the similarity transformations.To tackle nonlinear ODEs,MATLAB package bvp4c is used.In addition,a hallmark of the Matlab code with the reported results in the literature is achieved by benchmarking.The variations in motion,concentration,temperature,and motile density due to sundry parameters have been analyzed in-depth via graphs.Our analysis shows that the density profile of motile of microorganism is hiked with an increment in the bioconvection Rayleigh number but decreases for higher thermal Grashof number.展开更多
文摘In this numerical study,the effect of quartic autocatalysis type of chemical reaction,buoyancy force and thermal radiation phenomenon and magnetic effect on tangent hyperbolic nanofluid past an upper horizontal surface of a paraboloid has been studied.By considering the Buongiorno model approach,a diffusion of unequal coefficients in the presence of gyrotactic microorganism is discussed.Implementation of microorganism’s idea is used to stabilize the nanoparticles through bioconvection.The modeled PDEs of the problems are converted into nonlinear ODEs with the assistant of the similarity transformations.To tackle nonlinear ODEs,MATLAB package bvp4c is used.In addition,a hallmark of the Matlab code with the reported results in the literature is achieved by benchmarking.The variations in motion,concentration,temperature,and motile density due to sundry parameters have been analyzed in-depth via graphs.Our analysis shows that the density profile of motile of microorganism is hiked with an increment in the bioconvection Rayleigh number but decreases for higher thermal Grashof number.