We present definitions of the correlation degree and correlation coefficient of multi-output functions. Two relationships about the correlation degree of multi-output functions are proved. One is between the correlati...We present definitions of the correlation degree and correlation coefficient of multi-output functions. Two relationships about the correlation degree of multi-output functions are proved. One is between the correlation degree and independency, the other is between the correlation degree and balance. Especially the paper discusses the correlation degree of affine multioutput functions. We demonstrate properties of the correlation coefficient of multi-output functions. One is the value range of the correlation coefficient, one is the relationship between the correlation coefficient and independency, and another is the sufficient and necessary condition that two multi-output functions are equivalent to each other.展开更多
The light output functions for protons of ST-401 and BC-408 plastic scintillators were measured using white neutron source produced by the 9Be(d,n) 10B reaction at the HI-13 Tandem Accelerator at China Institute of ...The light output functions for protons of ST-401 and BC-408 plastic scintillators were measured using white neutron source produced by the 9Be(d,n) 10B reaction at the HI-13 Tandem Accelerator at China Institute of Atomic Energy(CIAE).The LOFs of plastic scintillators for protons in the energy range of 0.5-16.5 MeV were obtained by the time-of-flight(TOF) technique and an iterative procedure.Two parameters(kB and C) were deduced by fitting the experimental data.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibratio...In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.展开更多
This study reports a new model of an air standard Dual-Miller cycle(DMC) with two polytropic processes and heat transfer loss.The two reversible adiabatic processes which could not be realized in practice are replaced...This study reports a new model of an air standard Dual-Miller cycle(DMC) with two polytropic processes and heat transfer loss.The two reversible adiabatic processes which could not be realized in practice are replaced with two polytropic processes in order to more accurately reflect the practical working performance. The heat transfer loss is taken into account. The expressions of power output, thermal efficiency, entropy generation rate(EGR) and ecological function are addressed using finite-time thermodynamic theory. Through numerical calculations, the influences of compression ratio, cut-off ratio and polytropic exponent on the performance are thermodynamically analyzed. The model can be simplified to other cycle models under specific conditions, which means the results have an certain universality and may be helpful in the design of practical heat engines. It is shown that the entropy generation minimization does not always lead to the best system performance.展开更多
The task of robust fault detection and diagnosis of stochastic distribution control (SDC) systems with uncertainties is to use the measured input and the system output PDFs to still obtain possible faults informatio...The task of robust fault detection and diagnosis of stochastic distribution control (SDC) systems with uncertainties is to use the measured input and the system output PDFs to still obtain possible faults information of the system. Using the rational square-root B-spline model to represent the dynamics between the output PDF and the input, in this paper, a robust nonlinear adaptive observer-based fault diagnosis algorithm is presented to diagnose the fault in the dynamic part of such systems with model uncertainties. When certain conditions are satisfied, the weight vector of the rational square-root B-spline model proves to be bounded. Conver- gency analysis is performed for the error dynamic system raised from robust fault detection and fault diagnosis phase. Computer simulations are given to demon- strate the effectiveness of the proposed algorithm.展开更多
Perfect adaptation describes the ability of a biological system to restore its biological function precisely to the pre-perturbation level after being affected by the environmental disturbances.Mathematically,a biolog...Perfect adaptation describes the ability of a biological system to restore its biological function precisely to the pre-perturbation level after being affected by the environmental disturbances.Mathematically,a biological system with perfect adaptation can be modelled as an input-output nonlinear system whose output,usually determining the biological function,is asymptotically stable under all input disturbances concerned.In this paper,a quite general input-output mathematical model is employed and the 'functional' of biological function(FBF)- output Lyapunov function- is explored to investigate its perfect adaptation ability.Sufficient condition is established for the systems with FBF to achieve perfect adaptation.Then a sufficient and necessary condition is obtained for the linear systems to possess an output Lyapunov function.Furthermore,it is shown that the 'functional'of receptors activity exists in the perfect adaptation model of E.coh chemotaxis.Different with the existing mathematical surveys on perfect adaptation,most of which are based on the standpoint of control theory,we first investigate this problem using ways of nonlinear systems analysis.展开更多
文摘We present definitions of the correlation degree and correlation coefficient of multi-output functions. Two relationships about the correlation degree of multi-output functions are proved. One is between the correlation degree and independency, the other is between the correlation degree and balance. Especially the paper discusses the correlation degree of affine multioutput functions. We demonstrate properties of the correlation coefficient of multi-output functions. One is the value range of the correlation coefficient, one is the relationship between the correlation coefficient and independency, and another is the sufficient and necessary condition that two multi-output functions are equivalent to each other.
文摘The light output functions for protons of ST-401 and BC-408 plastic scintillators were measured using white neutron source produced by the 9Be(d,n) 10B reaction at the HI-13 Tandem Accelerator at China Institute of Atomic Energy(CIAE).The LOFs of plastic scintillators for protons in the energy range of 0.5-16.5 MeV were obtained by the time-of-flight(TOF) technique and an iterative procedure.Two parameters(kB and C) were deduced by fitting the experimental data.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
基金the National Natural Science Foundation of China(Project Nos.12022213,11772205 and 11902203)the Scieatifie Research Fund of Liaoning Provineinl Education Department(No.L201703)+1 种基金the Program of Liaoning Revitalization Talents(XLYC1807172)the Tralning Project of Liaoning Higher Education Institutions in Domestic and Oveseas(Nos.2018LNGXGJWPY-YB008).
文摘In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.
基金supported by the National Natural Science Foundation of China(Grant No.51576207)
文摘This study reports a new model of an air standard Dual-Miller cycle(DMC) with two polytropic processes and heat transfer loss.The two reversible adiabatic processes which could not be realized in practice are replaced with two polytropic processes in order to more accurately reflect the practical working performance. The heat transfer loss is taken into account. The expressions of power output, thermal efficiency, entropy generation rate(EGR) and ecological function are addressed using finite-time thermodynamic theory. Through numerical calculations, the influences of compression ratio, cut-off ratio and polytropic exponent on the performance are thermodynamically analyzed. The model can be simplified to other cycle models under specific conditions, which means the results have an certain universality and may be helpful in the design of practical heat engines. It is shown that the entropy generation minimization does not always lead to the best system performance.
基金Supported by the National Natural Science Foundation of China (Grant No. 60534010)the Outstanding Overseas Chinese Scholars Fund of CAS (Grant No. 2004-1-4)
文摘The task of robust fault detection and diagnosis of stochastic distribution control (SDC) systems with uncertainties is to use the measured input and the system output PDFs to still obtain possible faults information of the system. Using the rational square-root B-spline model to represent the dynamics between the output PDF and the input, in this paper, a robust nonlinear adaptive observer-based fault diagnosis algorithm is presented to diagnose the fault in the dynamic part of such systems with model uncertainties. When certain conditions are satisfied, the weight vector of the rational square-root B-spline model proves to be bounded. Conver- gency analysis is performed for the error dynamic system raised from robust fault detection and fault diagnosis phase. Computer simulations are given to demon- strate the effectiveness of the proposed algorithm.
文摘Perfect adaptation describes the ability of a biological system to restore its biological function precisely to the pre-perturbation level after being affected by the environmental disturbances.Mathematically,a biological system with perfect adaptation can be modelled as an input-output nonlinear system whose output,usually determining the biological function,is asymptotically stable under all input disturbances concerned.In this paper,a quite general input-output mathematical model is employed and the 'functional' of biological function(FBF)- output Lyapunov function- is explored to investigate its perfect adaptation ability.Sufficient condition is established for the systems with FBF to achieve perfect adaptation.Then a sufficient and necessary condition is obtained for the linear systems to possess an output Lyapunov function.Furthermore,it is shown that the 'functional'of receptors activity exists in the perfect adaptation model of E.coh chemotaxis.Different with the existing mathematical surveys on perfect adaptation,most of which are based on the standpoint of control theory,we first investigate this problem using ways of nonlinear systems analysis.