The methods of visual recognition,positioning and orienting with simple 3 D geometric workpieces are presented in this paper.The principle and operating process of multiple orientation run le...The methods of visual recognition,positioning and orienting with simple 3 D geometric workpieces are presented in this paper.The principle and operating process of multiple orientation run length coding based on general orientation run length coding and visual recognition method are described elaborately.The method of positioning and orientating based on the moment of inertia of the workpiece binary image is stated also.It has been applied in a research on flexible automatic coordinate measuring system formed by integrating computer aided design,computer vision and computer aided inspection planning,with a coordinate measuring machine.The results show that integrating computer vision with measurement system is a feasible and effective approach to improve their flexibility and automation.展开更多
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the...Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.展开更多
ABBOTT et al. considered that there might be two types of hydroxyls with different site energies in the dioctahedral silicates. Giese holds a similar opinion. However, so far no detailed research has been done on the ...ABBOTT et al. considered that there might be two types of hydroxyls with different site energies in the dioctahedral silicates. Giese holds a similar opinion. However, so far no detailed research has been done on the orientating features, types and genesis of orientations展开更多
In this paper,an image processing algorithm which is able to synthesize material textures of arbitrary shapes is proposed.The presented approach uses an arbitrary image to construct a structure layer of the material.T...In this paper,an image processing algorithm which is able to synthesize material textures of arbitrary shapes is proposed.The presented approach uses an arbitrary image to construct a structure layer of the material.The resulting structure layer is then used to constrain the material texture synthesis.The field of second-moment matrices is used to represent the structure layer.Many tests with various constraint images are conducted to ensure that the proposed approach accurately reproduces the visual aspects of the input material sample.The results demonstrate that the proposed algorithm is able to accurately synthesize arbitrary-shaped material textures while respecting the local characteristics of the exemplar.This paves the way toward the synthesis of 3D material textures of arbitrary shapes from 2D material samples,which has a wide application range in virtual material design and materials characterization.展开更多
The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained expe...The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained experimentally through tests on specimens under multiaxial loading with that calculated by the variance method. In the statistical approach criteria, several methods have been developed but we have presented only one method, namely the variance method using the equivalent stress. She assumes that the fracture plane orientation is the one on which the variance of the equivalent stress is maximum. Three types of equivalent stress are defined for this method [1]: normal stress, shear stress and combined normal and shear stress. The results obtained were compared with experimental results for multiaxial cyclic stress states, and it emerges that the variance method for the case of combined loading is conservative as it gives a better prediction of the fracture plane.展开更多
For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of the...For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of their electricity marketing,this study starts from the current situation of the electricity market and introduces in detail the market-oriented electricity marketing strategies of thermal power enterprises from four aspects:product strategy,price strategy,channel strategy,and promotion strategy.The analysis finds that a market-oriented electricity marketing strategy is not only an inevitable choice for thermal power enterprises to respond to current challenges but also an essential path for them to move toward high-quality development.Through continuous innovation and upgrading,thermal power enterprises will maintain a leading position in fierce market competition,achieve sustainable development,and make greater contributions to the prosperity and development of the energy industry.展开更多
The term hepatolithiasis describes the presence of biliary stones within the intrahepatic bile ducts,above the hilar confluence of the hepatic ducts.The disease is more prevalent in Asia,mainly owing to socioeconomic ...The term hepatolithiasis describes the presence of biliary stones within the intrahepatic bile ducts,above the hilar confluence of the hepatic ducts.The disease is more prevalent in Asia,mainly owing to socioeconomic and dietary factors,as well as the prevalence of biliary parasites.In the last century,owing to migration,its global incidence has increased.The main pathophysiological mechanisms involve cholangitis,bile infection and biliary strictures,creating a self-sustaining cycle that perpetuates the disease,frequently characterised by recurrent episodes of bacterial infection referred to as syndrome of“recurrent pyogenic cholangitis”.Furthermore,long-standing hepatolithiasis is a known risk factor for development of intrahepatic cholangiocarcinoma.Various classifications have aimed at providing useful insight of clinically relevant aspects and guidance for treatment.The management of symptomatic patients and those with complications can be complex,and relies upon a multidisciplinary team of hepatologists,endoscopists,interventional radiologists and hepatobiliary surgeons,with the main goal being to offer relief from the clinical presentations and prevent the development of more serious complications.This comprehensive review provides insight on various aspects of hepatolithiasis,with a focus on epidemiology,new evidence on pathophysiology,most important clinical aspects,different classification systems and contemporary management.展开更多
The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,sp...The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,spatially oriented scaffolds to stimulate osteochondral regeneration,has immense significance.Herein,targeted drugs,namely kartogenin@polydopamine(KGN@PDA)nanoparticles for cartilage repair and miRNA@calcium phosphate(miRNA@CaP)NPs for bone regeneration,were in situ deposited on a patterned supramolecular-assembled 2-ureido-4[lH]-pyrimidinone(UPy)modified gelation hydrogel film,facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands.This hydrogel film can be rolled into a cylindrical plug,mimicking the Haversian canal structure of natural bone.The resultant hydrogel demonstrates stable mechanical properties,a self-healing ability,a high capability for reactive oxygen species capture,and controlled release of KGN and miR-26a.In vitro,KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways,respectively.In vivo,the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration,evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones,along with the successful integration of neocartilage with subchondral bone.This biomaterial delivery approach represents a significant toward improved osteochondral repair.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconst...A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys.展开更多
Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with ...Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a...Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.展开更多
In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as...In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering.The cationic cellulose derivative C-Im-CN with cyano-imidazolium(Im-CN)cation and chloride anion prominently promotes the crystallization process,grain growth,and directional orientation of perovskite.Meanwhile,excess PbI_(2)is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains.These effects result in suppressing defect formation,decreasing grain boundaries,enhancing carrier extraction,inhibiting non-radiative recombination,and dramatically prolonging carrier lifetimes.Thus,the PSCs exhibit a high power conversion efficiency of 24.71%.Moreover,C-Im-CN has multiple interaction sites and polymer skeleton,so the unencapsulated PSCs maintain above 91.3%of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions.The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs.展开更多
Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes...Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.展开更多
Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi...Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi-encing increased aridity.Although numerous studies have investigated birds’responses to drought,the emphasis has primarily been on landbirds.Drought can significantly alter the wetland environments that waterbirds inhabit,but the response of waterbirds to drought remains understudied.In this study,we surveyed the distri-bution and behavior of Oriental Storks(Ciconia boyciana)in Poyang Lake,which is the largest freshwater lake in China.Results indicate that drought-induced catchment areas at the lowest water level limited the total popu-lation size of Oriental Storks in the sub-lakes.Sub-lakes with large catchment areas at the lowest water level demonstrated a capacity to support a larger population of wintering Oriental Storks.Over time,Oriental Storks exhibited a gradual concentration in Changhu Lake,characterized by larger catchments,after resource depletion in sub-lakes with smaller catchments.Additionally,the duration of Oriental Storks’vigilance and moving be-haviors decreased significantly compared with that observed before the drought.After the drought,Oriental Storks increased their foraging efforts,as evidenced by increased presence in deeper water and reaching their heads and necks into deeper water to forage,higher search rates,but lower foraging rates.In accordance with area-restricted search theory,reductions in habitat quality resulting from drought,including extensive fish die-offs,forced Oriental Storks to increase their foraging efforts.Sustaining a specific water area in sub-lakes during droughts can preserve resource availability,which is crucial for the conservation of Oriental Storks.Imple-menting measures such as water level control and micro-modification of lake bottoms in sub-lakes might mitigate the impact of drought on the piscivorous Oriental Storks.展开更多
Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and h...Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.展开更多
文摘The methods of visual recognition,positioning and orienting with simple 3 D geometric workpieces are presented in this paper.The principle and operating process of multiple orientation run length coding based on general orientation run length coding and visual recognition method are described elaborately.The method of positioning and orientating based on the moment of inertia of the workpiece binary image is stated also.It has been applied in a research on flexible automatic coordinate measuring system formed by integrating computer aided design,computer vision and computer aided inspection planning,with a coordinate measuring machine.The results show that integrating computer vision with measurement system is a feasible and effective approach to improve their flexibility and automation.
文摘Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.
文摘ABBOTT et al. considered that there might be two types of hydroxyls with different site energies in the dioctahedral silicates. Giese holds a similar opinion. However, so far no detailed research has been done on the orientating features, types and genesis of orientations
文摘In this paper,an image processing algorithm which is able to synthesize material textures of arbitrary shapes is proposed.The presented approach uses an arbitrary image to construct a structure layer of the material.The resulting structure layer is then used to constrain the material texture synthesis.The field of second-moment matrices is used to represent the structure layer.Many tests with various constraint images are conducted to ensure that the proposed approach accurately reproduces the visual aspects of the input material sample.The results demonstrate that the proposed algorithm is able to accurately synthesize arbitrary-shaped material textures while respecting the local characteristics of the exemplar.This paves the way toward the synthesis of 3D material textures of arbitrary shapes from 2D material samples,which has a wide application range in virtual material design and materials characterization.
文摘The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained experimentally through tests on specimens under multiaxial loading with that calculated by the variance method. In the statistical approach criteria, several methods have been developed but we have presented only one method, namely the variance method using the equivalent stress. She assumes that the fracture plane orientation is the one on which the variance of the equivalent stress is maximum. Three types of equivalent stress are defined for this method [1]: normal stress, shear stress and combined normal and shear stress. The results obtained were compared with experimental results for multiaxial cyclic stress states, and it emerges that the variance method for the case of combined loading is conservative as it gives a better prediction of the fracture plane.
文摘For thermal power enterprises,the traditional business model of scale expansion and a single product line restricts the development of electricity marketing.Therefore,to achieve the transformation and upgrading of their electricity marketing,this study starts from the current situation of the electricity market and introduces in detail the market-oriented electricity marketing strategies of thermal power enterprises from four aspects:product strategy,price strategy,channel strategy,and promotion strategy.The analysis finds that a market-oriented electricity marketing strategy is not only an inevitable choice for thermal power enterprises to respond to current challenges but also an essential path for them to move toward high-quality development.Through continuous innovation and upgrading,thermal power enterprises will maintain a leading position in fierce market competition,achieve sustainable development,and make greater contributions to the prosperity and development of the energy industry.
文摘The term hepatolithiasis describes the presence of biliary stones within the intrahepatic bile ducts,above the hilar confluence of the hepatic ducts.The disease is more prevalent in Asia,mainly owing to socioeconomic and dietary factors,as well as the prevalence of biliary parasites.In the last century,owing to migration,its global incidence has increased.The main pathophysiological mechanisms involve cholangitis,bile infection and biliary strictures,creating a self-sustaining cycle that perpetuates the disease,frequently characterised by recurrent episodes of bacterial infection referred to as syndrome of“recurrent pyogenic cholangitis”.Furthermore,long-standing hepatolithiasis is a known risk factor for development of intrahepatic cholangiocarcinoma.Various classifications have aimed at providing useful insight of clinically relevant aspects and guidance for treatment.The management of symptomatic patients and those with complications can be complex,and relies upon a multidisciplinary team of hepatologists,endoscopists,interventional radiologists and hepatobiliary surgeons,with the main goal being to offer relief from the clinical presentations and prevent the development of more serious complications.This comprehensive review provides insight on various aspects of hepatolithiasis,with a focus on epidemiology,new evidence on pathophysiology,most important clinical aspects,different classification systems and contemporary management.
基金the Natural Science Foundation of China(Grant Nos.82072413,82101649)National Key Research and Development Program of China(Grant Nos.2021YFE0105400).
文摘The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,spatially oriented scaffolds to stimulate osteochondral regeneration,has immense significance.Herein,targeted drugs,namely kartogenin@polydopamine(KGN@PDA)nanoparticles for cartilage repair and miRNA@calcium phosphate(miRNA@CaP)NPs for bone regeneration,were in situ deposited on a patterned supramolecular-assembled 2-ureido-4[lH]-pyrimidinone(UPy)modified gelation hydrogel film,facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands.This hydrogel film can be rolled into a cylindrical plug,mimicking the Haversian canal structure of natural bone.The resultant hydrogel demonstrates stable mechanical properties,a self-healing ability,a high capability for reactive oxygen species capture,and controlled release of KGN and miR-26a.In vitro,KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways,respectively.In vivo,the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration,evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones,along with the successful integration of neocartilage with subchondral bone.This biomaterial delivery approach represents a significant toward improved osteochondral repair.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金financial supports from the National Natural Science Foundation of China(No.51071125)the Major Project of Department of Education of Jiangxi Province,China(No.GJJ210605)。
文摘A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys.
基金supported by the National Natural Science Foundation of China(Grant No.31772258)the National Key Research and Development Program(Grant No.2019YFD1000102-11)。
文摘Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金National Natural Science Foundation of China(22078039)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)+1 种基金National Key Research and Development Program of China(2023YFB3810700)the Fundamental Research Funds for the Central Universities(DUT22LAB602)。
文摘Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.
基金supported by the National Natural Science Foundation of China(No.52173292 and U2004211)the Youth Innovation Promotion Association CAS(No.2018040).
文摘In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering.The cationic cellulose derivative C-Im-CN with cyano-imidazolium(Im-CN)cation and chloride anion prominently promotes the crystallization process,grain growth,and directional orientation of perovskite.Meanwhile,excess PbI_(2)is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains.These effects result in suppressing defect formation,decreasing grain boundaries,enhancing carrier extraction,inhibiting non-radiative recombination,and dramatically prolonging carrier lifetimes.Thus,the PSCs exhibit a high power conversion efficiency of 24.71%.Moreover,C-Im-CN has multiple interaction sites and polymer skeleton,so the unencapsulated PSCs maintain above 91.3%of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions.The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs.
基金the National Natural Science Foundation of China(Nos.52175143 and 51571150)。
文摘Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.
基金funded by the National Natural Science Foundation of China(Grant No.32360142).
文摘Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi-encing increased aridity.Although numerous studies have investigated birds’responses to drought,the emphasis has primarily been on landbirds.Drought can significantly alter the wetland environments that waterbirds inhabit,but the response of waterbirds to drought remains understudied.In this study,we surveyed the distri-bution and behavior of Oriental Storks(Ciconia boyciana)in Poyang Lake,which is the largest freshwater lake in China.Results indicate that drought-induced catchment areas at the lowest water level limited the total popu-lation size of Oriental Storks in the sub-lakes.Sub-lakes with large catchment areas at the lowest water level demonstrated a capacity to support a larger population of wintering Oriental Storks.Over time,Oriental Storks exhibited a gradual concentration in Changhu Lake,characterized by larger catchments,after resource depletion in sub-lakes with smaller catchments.Additionally,the duration of Oriental Storks’vigilance and moving be-haviors decreased significantly compared with that observed before the drought.After the drought,Oriental Storks increased their foraging efforts,as evidenced by increased presence in deeper water and reaching their heads and necks into deeper water to forage,higher search rates,but lower foraging rates.In accordance with area-restricted search theory,reductions in habitat quality resulting from drought,including extensive fish die-offs,forced Oriental Storks to increase their foraging efforts.Sustaining a specific water area in sub-lakes during droughts can preserve resource availability,which is crucial for the conservation of Oriental Storks.Imple-menting measures such as water level control and micro-modification of lake bottoms in sub-lakes might mitigate the impact of drought on the piscivorous Oriental Storks.
基金supported by the National Natural Science Foundation of China(52374290,52374288 and 52204298)the Innovation-driven Program of Central South University(2023CXQD009)+3 种基金the Hunan Provincial Innovation Foundation for Postgraduate(2024ZZTS0059)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)the National Key Research and Development Program of China(2022YFC3900805-4/7)the Hunan Provincial Education Office Foundation of China(21B0147)。
文摘Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.