In this article, we briefly review spin, charge, and orbital orderings in iron-based superconductors, as well as the multi-orbital models. The interplay of spin, charge, and orbital orderings is a key to understand th...In this article, we briefly review spin, charge, and orbital orderings in iron-based superconductors, as well as the multi-orbital models. The interplay of spin, charge, and orbital orderings is a key to understand the high temperature superconductivity. As an illustration, we use the two-orbital model to show the spin and charge orderings in iron-based superconductors based on the mean-field approximation in real space. The typical spin and charge orderings are shown by choosing appropriate parameters, which are in good agreement with experiments. We also show the effect of Fe vacancies, which can introduce the nematic phase and interesting magnetic ground states. The orbital ordering is also discussed in iron-based superconductors. It is found that disorder may play a role to produce the superconductivity.展开更多
The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for ...The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.展开更多
Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and foun...Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and found to be degenerate, which confirms the presence of the coexistent phases observed experimentally. We clearly show that due to the inherent frustration, the ground state of the system only with the superexchange interaction is degenerate; while the Jahn-Teller distortion, especially the anharmonic effect, stabilizes the orbital ordered phase at about 23% in the x2-y2 orbit and at 77% in the 3z2-r2 orbit. Meanwhile the magnetic moment of Cu is considerably reduced to 0.56μB, and magnetic coupling strengths are highly anisotropic, Jx/Jxy ≈ 18. These results are in good agreement with the experiments, implying that the anharmonic Jahn-Teller effect plays an essential role in stabilising the orbital ordered ground state of KCuF3.展开更多
In this paper we have found a general subordinator, X, whose range up to time 1, X([0,1)), has similar structure as random re orderings of the Cantor set K(ω).X([0,1)) and K(ω) have the same exact Hausdorff measure...In this paper we have found a general subordinator, X, whose range up to time 1, X([0,1)), has similar structure as random re orderings of the Cantor set K(ω).X([0,1)) and K(ω) have the same exact Hausdorff measure function and the integal test of packing measure.展开更多
Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup&...Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0.展开更多
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom...In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.展开更多
In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belon...In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.展开更多
Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localize...Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.展开更多
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica...Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.展开更多
This short note is devoted to an approach of the quasi-hereditary orderings of An-type algebras with exactly two generators. A necessary and sufficient condition for a quasi-hereditary ordering is obtained. Moreover, ...This short note is devoted to an approach of the quasi-hereditary orderings of An-type algebras with exactly two generators. A necessary and sufficient condition for a quasi-hereditary ordering is obtained. Moreover, the numbers of quasi-hereditary orderings of such algebras are explicitly given.展开更多
This paper presents a nonlinear micropolar nonclassical continuum theory (MPNCCT) for finite deformation, finite strain deformation physics of thermosviscoelastic solid medium with memory (polymeric micropolar solids)...This paper presents a nonlinear micropolar nonclassical continuum theory (MPNCCT) for finite deformation, finite strain deformation physics of thermosviscoelastic solid medium with memory (polymeric micropolar solids) based on classical rotations cΘand their rates. Contravariant second Piola-Kirchhoff stress and moment tensors, in conjunction with finite deformation measures derived by the authors in recent paper, are utilized in deriving the conservation and balance laws and the constitutive theories based on conjugate pairs in entropy inequality and the representation theorem. This nonlinear MPNCCT for TVES with rheology: 1) incorporates nonlinear ordered rate dissipation mechanism based on Green’s strain rates up to order n;2) also incorporates an additional ordered rate dissipation mechanism due to microconstituents, the viscosity of the medium and the rates of the symmetric part of the rotation gradient (of cΘ) tensor up to order n, referred to as micropolar dissipation or micropolar viscous dissipation mechanism;3) incorporates the primary mechanism of memory or rheology due to long chain molecules of the polymer and the viscosity of the medium by using the contravaraint second Piola-Kirchhoff stress tensor and its rates up to order m, resulting in a relaxation spectrum;4) incorporates second mechanism of memory or rheology due to nonclassical physics, interaction of microconstituents with the viscous medium and long chain molecules by considering rates of the contravariant second Piola-Kirchhoff moment tensor up to order m, resulting in relaxation of second Piola-Kirchhoff moment tensor. This results in another relaxation spectrum for the second Piola-Kirchhoff moment tensor due to microconstituents, referred to as micropolar relaxation spectrum consisting of micropolar relaxation time constants of the material. This nonlinear MPNCCT for TVES with memory is thermodynamically and mathematically consistent, and the mathematical model consisting of conservation and balance laws and the constitutive theories has closure and naturally reduces to linear MPNCCT based on infinitesimal deformation assumption. BMM is the essential balance law for all MPNCCT and is used in the present work as well. In the absence of this balance law, a valid thermodynamically and mathematically consistent nonlinear MPNCCT is not possible. The nonlinear MPNCCT based on rotations (cΘ+αΘ) and αΘ(ignoring cΘ) is not considered due to the fact that even the linear MPNCCT based on these rotations is invalid and is thermodynamically and mathematically inconsistent MPNCCT.展开更多
In this paper, we study, mathematically speaking, the problem-the number of admissible preference orderings for the transitivity of simple majority vote(SMV) derived from Arrow’s Impossibility Theorem. In our researc...In this paper, we study, mathematically speaking, the problem-the number of admissible preference orderings for the transitivity of simple majority vote(SMV) derived from Arrow’s Impossibility Theorem. In our research, we find, by computer enumerating, that some results given by Craven are not correct. By defining a set of constraints, we give the recurrence formula of the local maximal number of admissible preference orderings and some other useful results.展开更多
At present,there is a deviation in the EU's perception of China,which argues that China's economic model has undermined the EU's economic competitiveness,challenged the Western-dominated international orde...At present,there is a deviation in the EU's perception of China,which argues that China's economic model has undermined the EU's economic competitiveness,challenged the Western-dominated international order,and weakened the EU's strategic position.Therefore,the EU has promoted the“Indo-Pacific Strategy”,strengthened transatlantic coordination on China policy,and rebalanced China-EU economic relations with a more confrontational stance.As the EU's China policy has become increasingly geopolitical,“security concerns”have further intensified the impact on China-EU relations.Simultaneously,economic ties between China and the EU have notably diminished,accompanied by a deepening ideological divide.However,there is a strong endogenous driving force for China-EU relations,which enjoy bright prospects of development,and both China and Europe are staunch defenders of multilateralism.The EU needs to cooperate with China to solve global challenges,and its transformation of China policy has constraints.展开更多
The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this stu...The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this study,molecular dynamics(MD)simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity,modulated by surface charges,to elucidate the adsorption behavior of nanobubbles at the interface.Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry.We observed that as the surface charge increases,the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape,and ultimately forming a stable nanobubble upon an ordered water monolayer.When the solid–water interactions are weak with a small partial charge,the hydrophobic gas(N_(2))molecules accumulate near the solid surfaces.However,we have found,for the first time,that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges.Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.展开更多
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
Designing Fischer-Tropsch synthesis(FTS)catalysts to selectively produce liquid hydrocarbon fuels is a crucial challenge.Herein,we selectively introduced Co nanoparticles(NPs)into the micropores and mesopores of an or...Designing Fischer-Tropsch synthesis(FTS)catalysts to selectively produce liquid hydrocarbon fuels is a crucial challenge.Herein,we selectively introduced Co nanoparticles(NPs)into the micropores and mesopores of an ordered mesoporous MFI zeolite(OMMZ)through impregnation,which controlled the carbon number distribution in the FTS products by tuning the position of catalytic active sites in differently sized pores.The Co precursors coordinated by acetate with a size of 9.4×4.2×2.5Åand by 2,2‘-bipyridine with a size of 9.5×8.7×7.9Å,smaller and larger than the micropores(ca.5.5Å)of MFI,made the Co species incorporated in OMMZ's micropores and mesopores,respectively.The carbon number products synthesized with the Co NPs confined in mesopores were larger than that in micropores.The high jet and diesel selectivities of 66.5%and 65.3%were achieved with Co NPs confined in micropores and mesopores of less acidic Na-type OMMZ,respectively.Gasoline and jet selectivities of 76.7%and 70.8%were achieved with Co NPs confined in micropores and mesopores of H-type OMMZ with Brönsted acid sites,respectively.A series of characterizations revealed that the selective production of diesel and jet fuels was due to the C-C cleavage suppressing of heavier hydrocarbons by the Co NPs located in mesopores.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, et...Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, etc. Therefore, it is of great significance to study fractional-order time-delay differential equations. In this paper, we discuss a finite volume element method for a class of fractional-order neutral time-delay differential equations. By introducing an intermediate variable, the fourth-order problem is transformed into a system of equations consisting of two second-order partial differential equations. The L1 formula is used to approximate the time fractional order derivative terms, and the finite volume element method is used in space. A fully discrete format of the equations is established, and we prove the existence, uniqueness, convergence and stability of the solution. Finally, the validity of the format is verified by numerical examples.展开更多
The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping.However,the interplay of orderly arranged alk...The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping.However,the interplay of orderly arranged alkali adatoms with the surface states of quantum materials remains unexplored.Here,by using low-temperature scanning tunneling microscopy/spectroscopy(STM/S),we observed the emergent 3×3 super modulation of electronic states on the√3×√3R30°(R3)Cs ordered surface of kagome superconductor CsV_(3)Sb_(5).The nondispersive 3×3 superlattice at R3 ordered surface shows contrast inversion in positive and negative differential conductance maps,indicating a charge order origin.The 3×3 charge order is suppressed with increasing temperature and undetectable at a critical temperature of~62 K.Furthermore,in the Ta substituted sample CsV_(2.6)Ta_(0.4)Sb_(5),where long-range 2×2×2 charge density wave is significantly suppressed,the 3×3 charge order on the R3 ordered surface becomes blurred and much weaker than that in the undoped sample.It indicates that the 3×3 charge order on the R3 ordered surface is directly correlated to the bulk charge density waves in CsV_(3)Sb_(5).Our work provides a new platform for understanding and manipulating the cascade of charge orders in kagome superconductors.展开更多
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish...This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB821400)the National Natural Science Foundation of China(GrantNos.11074310 and 11275279)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110171110026)the Program for New Century Excellent Talents in University,China(Grant No.NCET-11-0547)
文摘In this article, we briefly review spin, charge, and orbital orderings in iron-based superconductors, as well as the multi-orbital models. The interplay of spin, charge, and orbital orderings is a key to understand the high temperature superconductivity. As an illustration, we use the two-orbital model to show the spin and charge orderings in iron-based superconductors based on the mean-field approximation in real space. The typical spin and charge orderings are shown by choosing appropriate parameters, which are in good agreement with experiments. We also show the effect of Fe vacancies, which can introduce the nematic phase and interesting magnetic ground states. The orbital ordering is also discussed in iron-based superconductors. It is found that disorder may play a role to produce the superconductivity.
基金This project was supported by the National Natural Science Foundation of China(70631004).
文摘The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90303013 and 10874186)the ‘100 Talents Project’ and the Knowledge Innovation Program of the Chinese Academy of Sciences (CAS)
文摘Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and found to be degenerate, which confirms the presence of the coexistent phases observed experimentally. We clearly show that due to the inherent frustration, the ground state of the system only with the superexchange interaction is degenerate; while the Jahn-Teller distortion, especially the anharmonic effect, stabilizes the orbital ordered phase at about 23% in the x2-y2 orbit and at 77% in the 3z2-r2 orbit. Meanwhile the magnetic moment of Cu is considerably reduced to 0.56μB, and magnetic coupling strengths are highly anisotropic, Jx/Jxy ≈ 18. These results are in good agreement with the experiments, implying that the anharmonic Jahn-Teller effect plays an essential role in stabilising the orbital ordered ground state of KCuF3.
文摘In this paper we have found a general subordinator, X, whose range up to time 1, X([0,1)), has similar structure as random re orderings of the Cantor set K(ω).X([0,1)) and K(ω) have the same exact Hausdorff measure function and the integal test of packing measure.
基金Supported by National Nature Science Foundation of China.
文摘Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0.
基金support by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)is gratefully acknowledged.
文摘In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.
文摘In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.
文摘Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.
基金supported by the National Natu-ral Science Foundation of China(Grants No.12174220 and No.12074217)the Shandong Provincial Science Foundation for Excellent Young Scholars(Grant No.ZR2023YQ001)+1 种基金the Taishan Young Scholar Program of Shandong Provincethe Qilu Young Scholar Pro-gram of Shandong University.
文摘Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.
基金the National Natural Science Foundation of China (No.10601036)
文摘This short note is devoted to an approach of the quasi-hereditary orderings of An-type algebras with exactly two generators. A necessary and sufficient condition for a quasi-hereditary ordering is obtained. Moreover, the numbers of quasi-hereditary orderings of such algebras are explicitly given.
文摘This paper presents a nonlinear micropolar nonclassical continuum theory (MPNCCT) for finite deformation, finite strain deformation physics of thermosviscoelastic solid medium with memory (polymeric micropolar solids) based on classical rotations cΘand their rates. Contravariant second Piola-Kirchhoff stress and moment tensors, in conjunction with finite deformation measures derived by the authors in recent paper, are utilized in deriving the conservation and balance laws and the constitutive theories based on conjugate pairs in entropy inequality and the representation theorem. This nonlinear MPNCCT for TVES with rheology: 1) incorporates nonlinear ordered rate dissipation mechanism based on Green’s strain rates up to order n;2) also incorporates an additional ordered rate dissipation mechanism due to microconstituents, the viscosity of the medium and the rates of the symmetric part of the rotation gradient (of cΘ) tensor up to order n, referred to as micropolar dissipation or micropolar viscous dissipation mechanism;3) incorporates the primary mechanism of memory or rheology due to long chain molecules of the polymer and the viscosity of the medium by using the contravaraint second Piola-Kirchhoff stress tensor and its rates up to order m, resulting in a relaxation spectrum;4) incorporates second mechanism of memory or rheology due to nonclassical physics, interaction of microconstituents with the viscous medium and long chain molecules by considering rates of the contravariant second Piola-Kirchhoff moment tensor up to order m, resulting in relaxation of second Piola-Kirchhoff moment tensor. This results in another relaxation spectrum for the second Piola-Kirchhoff moment tensor due to microconstituents, referred to as micropolar relaxation spectrum consisting of micropolar relaxation time constants of the material. This nonlinear MPNCCT for TVES with memory is thermodynamically and mathematically consistent, and the mathematical model consisting of conservation and balance laws and the constitutive theories has closure and naturally reduces to linear MPNCCT based on infinitesimal deformation assumption. BMM is the essential balance law for all MPNCCT and is used in the present work as well. In the absence of this balance law, a valid thermodynamically and mathematically consistent nonlinear MPNCCT is not possible. The nonlinear MPNCCT based on rotations (cΘ+αΘ) and αΘ(ignoring cΘ) is not considered due to the fact that even the linear MPNCCT based on these rotations is invalid and is thermodynamically and mathematically inconsistent MPNCCT.
基金This project is supported by Doctoral Fundation of National Educational Committee.
文摘In this paper, we study, mathematically speaking, the problem-the number of admissible preference orderings for the transitivity of simple majority vote(SMV) derived from Arrow’s Impossibility Theorem. In our research, we find, by computer enumerating, that some results given by Craven are not correct. By defining a set of constraints, we give the recurrence formula of the local maximal number of admissible preference orderings and some other useful results.
文摘At present,there is a deviation in the EU's perception of China,which argues that China's economic model has undermined the EU's economic competitiveness,challenged the Western-dominated international order,and weakened the EU's strategic position.Therefore,the EU has promoted the“Indo-Pacific Strategy”,strengthened transatlantic coordination on China policy,and rebalanced China-EU economic relations with a more confrontational stance.As the EU's China policy has become increasingly geopolitical,“security concerns”have further intensified the impact on China-EU relations.Simultaneously,economic ties between China and the EU have notably diminished,accompanied by a deepening ideological divide.However,there is a strong endogenous driving force for China-EU relations,which enjoy bright prospects of development,and both China and Europe are staunch defenders of multilateralism.The EU needs to cooperate with China to solve global challenges,and its transformation of China policy has constraints.
基金supported by the National Natural Science Foundation of China(Grant Nos.12022508,12074394,and 22125604)Shanghai Supercomputer Center of ChinaShanghai Snowlake Technology Co.Ltd.
文摘The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this study,molecular dynamics(MD)simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity,modulated by surface charges,to elucidate the adsorption behavior of nanobubbles at the interface.Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry.We observed that as the surface charge increases,the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape,and ultimately forming a stable nanobubble upon an ordered water monolayer.When the solid–water interactions are weak with a small partial charge,the hydrophobic gas(N_(2))molecules accumulate near the solid surfaces.However,we have found,for the first time,that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges.Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
文摘Designing Fischer-Tropsch synthesis(FTS)catalysts to selectively produce liquid hydrocarbon fuels is a crucial challenge.Herein,we selectively introduced Co nanoparticles(NPs)into the micropores and mesopores of an ordered mesoporous MFI zeolite(OMMZ)through impregnation,which controlled the carbon number distribution in the FTS products by tuning the position of catalytic active sites in differently sized pores.The Co precursors coordinated by acetate with a size of 9.4×4.2×2.5Åand by 2,2‘-bipyridine with a size of 9.5×8.7×7.9Å,smaller and larger than the micropores(ca.5.5Å)of MFI,made the Co species incorporated in OMMZ's micropores and mesopores,respectively.The carbon number products synthesized with the Co NPs confined in mesopores were larger than that in micropores.The high jet and diesel selectivities of 66.5%and 65.3%were achieved with Co NPs confined in micropores and mesopores of less acidic Na-type OMMZ,respectively.Gasoline and jet selectivities of 76.7%and 70.8%were achieved with Co NPs confined in micropores and mesopores of H-type OMMZ with Brönsted acid sites,respectively.A series of characterizations revealed that the selective production of diesel and jet fuels was due to the C-C cleavage suppressing of heavier hydrocarbons by the Co NPs located in mesopores.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
文摘Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, etc. Therefore, it is of great significance to study fractional-order time-delay differential equations. In this paper, we discuss a finite volume element method for a class of fractional-order neutral time-delay differential equations. By introducing an intermediate variable, the fourth-order problem is transformed into a system of equations consisting of two second-order partial differential equations. The L1 formula is used to approximate the time fractional order derivative terms, and the finite volume element method is used in space. A fully discrete format of the equations is established, and we prove the existence, uniqueness, convergence and stability of the solution. Finally, the validity of the format is verified by numerical examples.
基金Project supported by the National Key Research and Development Project of China(Grant Nos.2022YFA1204100 and 2019YFA0308500)the National Natural Science Foundation of China(Grant No.62488201)+1 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping.However,the interplay of orderly arranged alkali adatoms with the surface states of quantum materials remains unexplored.Here,by using low-temperature scanning tunneling microscopy/spectroscopy(STM/S),we observed the emergent 3×3 super modulation of electronic states on the√3×√3R30°(R3)Cs ordered surface of kagome superconductor CsV_(3)Sb_(5).The nondispersive 3×3 superlattice at R3 ordered surface shows contrast inversion in positive and negative differential conductance maps,indicating a charge order origin.The 3×3 charge order is suppressed with increasing temperature and undetectable at a critical temperature of~62 K.Furthermore,in the Ta substituted sample CsV_(2.6)Ta_(0.4)Sb_(5),where long-range 2×2×2 charge density wave is significantly suppressed,the 3×3 charge order on the R3 ordered surface becomes blurred and much weaker than that in the undoped sample.It indicates that the 3×3 charge order on the R3 ordered surface is directly correlated to the bulk charge density waves in CsV_(3)Sb_(5).Our work provides a new platform for understanding and manipulating the cascade of charge orders in kagome superconductors.
基金Supported by the Natural Science Foundation of Zhejiang Province(No.LQ22F030015).
文摘This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.