Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject...Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.展开更多
A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5...A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.展开更多
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
In this work, a conceptual DFT investigation is carried out to study the electrophilic aromatic substitution reaction (SEAr) of 1,2-dimethoxybenzene and 3-(p-nitrobenzoyloxy)-but-3-en-2-one (a captodative olefin). Her...In this work, a conceptual DFT investigation is carried out to study the electrophilic aromatic substitution reaction (SEAr) of 1,2-dimethoxybenzene and 3-(p-nitrobenzoyloxy)-but-3-en-2-one (a captodative olefin). Herein, we have studied the regioselectivity of such reactions considering the effect of solvents of different polarities and the presence of BF3 as the catalyst. Understanding the effect of the solvent and the role of the Lewis catalyst on the pathway of Friedel-Crafts reactions is important to further facilitate the introduction of side chains in aromatic rings with captodative olefins, and thus be able to synthesize compounds analogous to natural products, e.g., α-asarone. Global and local reactivity descriptors were obtained, finding a key role when these reactions take place in the presence of nonpolar solvents. In addition, the Intrinsic Reaction Coordinate diagrams (IRCs) were calculated. Such results of the free activation energy (ΔG‡) clearly show that this reaction is entirely regioselective, forming the unique product in the para position, in agreement with our predictions of the local reactivity descriptors obtained from the Parr functions, wherein the first reaction step, the carbon C4 of the aromatic compound 1,2-dimethoxybenzene is favored. Moreover, from the IRCs, we found that the reactivity of the para adduct increases in the presence of nonpolar solvents. Interestingly, considering a polar solvent (MeCN), the intermediate formed (σ-complex) is more stable since it presents a more significant charge transfer with the solvent than the intermediate in the presence of a nonpolar solvent, making a reaction more challenging to reach when the reaction is carried out in the presence of MeCN because of the increasing of the energetic barrier from σ-complex to the TS2 in the intrinsic reactive coordinate diagram. Therefore, the polarity of the solvent plays an important role, particularly in the activation energy of the TS2. Our computational results explained our experimental results quite well, confirming the importance of the solvent’s polarity to this SEAr reaction and explaining why, experimentally, the nonpolar solvent drove the reaction under catalyzed conditions.展开更多
基金the National Natural Science Foundation of China(91834302)。
文摘Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.
文摘A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
文摘In this work, a conceptual DFT investigation is carried out to study the electrophilic aromatic substitution reaction (SEAr) of 1,2-dimethoxybenzene and 3-(p-nitrobenzoyloxy)-but-3-en-2-one (a captodative olefin). Herein, we have studied the regioselectivity of such reactions considering the effect of solvents of different polarities and the presence of BF3 as the catalyst. Understanding the effect of the solvent and the role of the Lewis catalyst on the pathway of Friedel-Crafts reactions is important to further facilitate the introduction of side chains in aromatic rings with captodative olefins, and thus be able to synthesize compounds analogous to natural products, e.g., α-asarone. Global and local reactivity descriptors were obtained, finding a key role when these reactions take place in the presence of nonpolar solvents. In addition, the Intrinsic Reaction Coordinate diagrams (IRCs) were calculated. Such results of the free activation energy (ΔG‡) clearly show that this reaction is entirely regioselective, forming the unique product in the para position, in agreement with our predictions of the local reactivity descriptors obtained from the Parr functions, wherein the first reaction step, the carbon C4 of the aromatic compound 1,2-dimethoxybenzene is favored. Moreover, from the IRCs, we found that the reactivity of the para adduct increases in the presence of nonpolar solvents. Interestingly, considering a polar solvent (MeCN), the intermediate formed (σ-complex) is more stable since it presents a more significant charge transfer with the solvent than the intermediate in the presence of a nonpolar solvent, making a reaction more challenging to reach when the reaction is carried out in the presence of MeCN because of the increasing of the energetic barrier from σ-complex to the TS2 in the intrinsic reactive coordinate diagram. Therefore, the polarity of the solvent plays an important role, particularly in the activation energy of the TS2. Our computational results explained our experimental results quite well, confirming the importance of the solvent’s polarity to this SEAr reaction and explaining why, experimentally, the nonpolar solvent drove the reaction under catalyzed conditions.