期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Multidimensional Laplace Transforms over Quaternions, Octonions and Cayley-Dickson Algebras, Their Applications to PDE
1
作者 Sergey Victor Ludkovsky 《Advances in Pure Mathematics》 2012年第2期63-103,共41页
Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. A... Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial differential equations of higher order with real and complex coefficients and with variable coefficients with or without boundary conditions are considered. 展开更多
关键词 Laplace Transform Quaternion Skew Field octonion algebra Cayley-Dickson algebra Partial Differential Equation NON-COMMUTATIVE Integration
在线阅读 下载PDF
八元数分数阶傅里叶变换的微分性质研究
2
作者 杨茜 冯强 +1 位作者 蒋楠 姬锦仪 《贵州大学学报(自然科学版)》 2025年第1期7-11,41,共6页
八元数分数阶傅里叶变换作为一种新颖的信号处理工具,在处理复杂信号和多维数据方面具有潜力。本文针对八元数分数阶傅里叶变换的偏微分性质展开研究。首先介绍了八元数及其四元数分数阶傅里叶变换的基本概念和数学表达式,在此基础上定... 八元数分数阶傅里叶变换作为一种新颖的信号处理工具,在处理复杂信号和多维数据方面具有潜力。本文针对八元数分数阶傅里叶变换的偏微分性质展开研究。首先介绍了八元数及其四元数分数阶傅里叶变换的基本概念和数学表达式,在此基础上定义了八元数分数阶傅里叶变换;其次在详细分析了八元数分数阶傅里叶变换的基础上,通过数学证明,给出了八元数分数阶傅里叶变换多种形式的微分性质。本文的研究可以为八元数分数阶傅里叶变换在信号处理领域的进一步应用提供理论与方法支撑。 展开更多
关键词 分数阶傅里叶变换 八元代数 微分性质
在线阅读 下载PDF
Powers of Octonions
3
作者 W. E. Ahmed 《Applied Mathematics》 2021年第2期75-84,共10页
As it is known, Binomial expansion, De Moivre’s formula, and Euler’s formula are suitable methods for computing the powers of a complex number, but to compute the powers of an octonion number in easy way, we need to... As it is known, Binomial expansion, De Moivre’s formula, and Euler’s formula are suitable methods for computing the powers of a complex number, but to compute the powers of an octonion number in easy way, we need to derive suitable formulas from these methods. In this paper, we present a novel way to compute the powers of an octonion number using formulas derived from the binomial expansion. 展开更多
关键词 octonion Matrix algebra
在线阅读 下载PDF
The Cyclic Universes Model Based on the Split Division Algebras
4
作者 Ding-Yu Chung 《Journal of Modern Physics》 2018年第13期2257-2273,共17页
The proposed cyclic universes model based on the split division algebras accounts for the inflation, the Big Bang, gravity, dark energy, dark matter, the standard model, and the masses of all elementary particles. The... The proposed cyclic universes model based on the split division algebras accounts for the inflation, the Big Bang, gravity, dark energy, dark matter, the standard model, and the masses of all elementary particles. The split algebras (complex quaternion and complex octonion) as the Furey model generate the fixed spacetime dimension number for the observable universe with the fixed 4-dimensional spacetime (4D) standard model particles and the oscillating spacetime dimension number for the oscillating universes (hidden or dark energy) with the oscillation between 11D and 11D through 10D and between 10D and 10D through 4D. 11D has the lowest rest mass, the highest speed of light, and the highest vacuum energy, while 4D has the highest rest mass, the lowest (observed) speed of light, and zero vacuum energy. In the cyclic universes model, the universes start with the positive-energy and the negative-energy 11D membrane-antimembrane dual universes from the zero-energy inter-universal void, and are followed by the transformation of the 11D membrane-antimembrane dual universes into the 10D string-antistring dual universes and the external dual gravities as in the Randall-Sundrum model, resulting in the four equal and separate universes consisting of the positive-energy 10D universe, the positive-energy external gravity, the negative-energy 10D universe, and the negative-energy external gravity. Under the fixed spacetime dimension number, the positive-energy 10D universe is transformed into 4D standard model particles through the inflation and the Big Bang. Dark matter is the right-handed neutrino, exactly five times of baryonic matter in total mass in the universe. Under the oscillating spacetime dimension number, the other three universes oscillate between 10D and 10D through 4D, resulting in the hidden universes when D > 4 and dark energy (the maximum dark energy = 3/4 = 75%) when D = 4. Eventually, all four universes return to the 10D universes. 展开更多
关键词 CYCLIC UNIVERSES MODEL Division algebras Furey COMPLEX Quaternion COMPLEX octonion DARK Energy DARK Matter Standard MODEL Gravity
在线阅读 下载PDF
非交换非结合的多复变
5
作者 任广斌 《大学数学》 2017年第5期1-7,共7页
多复变在非交换非结合领域的推广近年来取得了迅猛的发展.本文简单介绍这方面的最新进展,其中包括切片Clifford分析、离散Clifford分析、Hermitian Clifford分析、Dunkl Clifford分析、四元数分析、八元数分析,离散复分析在统计物理中Is... 多复变在非交换非结合领域的推广近年来取得了迅猛的发展.本文简单介绍这方面的最新进展,其中包括切片Clifford分析、离散Clifford分析、Hermitian Clifford分析、Dunkl Clifford分析、四元数分析、八元数分析,离散复分析在统计物理中Ising模型的应用,以及与切片Clifford分析相关的S-谱理论在量子物理的应用. 展开更多
关键词 CLIFFORD分析 DIRAC算子 Witt基 四元数 八元数 交错代数
在线阅读 下载PDF
各类解析函数构造的统一公式 被引量:4
6
作者 王志平 李兴民 《华南师范大学学报(自然科学版)》 CAS 2007年第3期22-26,共5页
通过一个反例指出了已有的用调和函数构造Clifford解析函数的一个简洁的方法的错误所在.另外,在此基础上给出了一个更为简洁的方法,并且将它推广到了八元数分析中,得到了一个复分析、四元数分析、Clifford分析以及八元数分析中各类解析... 通过一个反例指出了已有的用调和函数构造Clifford解析函数的一个简洁的方法的错误所在.另外,在此基础上给出了一个更为简洁的方法,并且将它推广到了八元数分析中,得到了一个复分析、四元数分析、Clifford分析以及八元数分析中各类解析函数构造的一个统一的公式. 展开更多
关键词 四元数 八元数 CLIFFORD代数
在线阅读 下载PDF
八元数分析中若干结合运算定理 被引量:1
7
作者 李兴民 《广州大学学报(自然科学版)》 CAS 2002年第1期10-14,共5页
八元数是一种不结合代数 ,关于它的结合运算性质知之甚少 .本文给出了其若干新的结合运算定理 ,同时证明了八元数中的某种乘法运算 ,恰好代表R7中的旋转 .
关键词 四元数 CLIFFORD代数 八元数 结合子 结合运算定理 乘法运算 可除代数 Cayley数
在线阅读 下载PDF
Quaternion rings and octonion rings
8
作者 Gangyong LEE Kiyoichi OSHIRO 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第1期143-155,共13页
In this paper, for rings R, we introduce complex rings C(R), quaternion rings H(R), and octonion rings O(R), which are extension rings of R; R C(R) H(R) O(R). Our main purpose of this paper is to sho... In this paper, for rings R, we introduce complex rings C(R), quaternion rings H(R), and octonion rings O(R), which are extension rings of R; R C(R) H(R) O(R). Our main purpose of this paper is to show that if R is a Frobenius algebra, then these extension rings are Frobenius Mgebras and if R is a quasi-Frobenius ring, then C(R) and H(R) are quasi-Frobenius rings and, when Char(R)=2, O(R) is also a quasi-Frobenius ring. 展开更多
关键词 Hamilton quaternion numbers Cayley-Grave's tables complex rings quaternion rings octonion rings Frobenius algebras QF-rings
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部