Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous doc...Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.展开更多
Although the late Quaternary slip rate of the Northern Margin Fault of the Huaizhuo Basin(NFHB)was studied approximately 30 years ago using thermoluminescence and geomorphic methods,the underlying uncertainty cannot b...Although the late Quaternary slip rate of the Northern Margin Fault of the Huaizhuo Basin(NFHB)was studied approximately 30 years ago using thermoluminescence and geomorphic methods,the underlying uncertainty cannot be neglected,considering the limitations resulting from age and displacement measurements.Accordingly,we attempted to re-estimate the late Quaternary slip rate of the NFHB using high-precision remote sensing image interpretation,large-scale geological and geomorphic mapping,paleoseismic analysis,and Quaternary geochronology testing.The results,based on stratigraphic dislocation and age constraint in the trenches,show that the present deformation of the NFHB has been dominated by the extension,with a vertical slip rate~0.04-0.11 mm/a.We estimate a vertical slip rate of~0.06 mm/a,with an R^(2) value of~0.91,which is much lower than the~0.5 mm/a result estimated previously.There are three possible reasons for this discrepancy.The fi rst is the limitation resulting from dating and displacement measurements in earlier studies;the second is the slip decomposition caused by multiple branches of the NFHB,which leads to the low slip rate observed at a single fault;and third possible explanation is that the fault may be locked at present with a low slip rate,which means that the earthquake hazard of the NFHB cannot be ignored,and more in-depth research,such as geodetic and intensive observations of earthquake precursors,is urgently needed.This discovery poses a new challenge for the active study of the NFHB and the northeast corner of the Ordos Plateau in the North China Block.展开更多
The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning a...The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning and have Th/U ratios ranging from 0.8 to 10.6, indicating a magmafic origin. The weighted average 206pb/238U age is 637±4 Ma (2σ, n=15), which can be considered as the crystallization age of the Zhouan intrusion. Zircon grains have δ18O values ranging from 5.2‰to 7.0‰, with an averaged value of 5.8±0.4‰(1 or, n=33), similar to the mantle δ18O value of zircon. Their 176Hf/177Hf(t) ratios range from 0.282410 to 0.282594 with εHf(t) values ranging from 1.3 to 7.6, lower than the corresponding value of the depleted mantle (~15), indicating an enriched mantle source. The enriched mantle source may have generated from a metasomatized lithospheric mantle with subducted slab. A number of -635 Ma mafic-ultramafic intrusions in the Suizao basin are associated with coeval bimodal volcanics of the Yaolinghe Formation, indicating a continental rift setting. The ~635 Ma magmafic event in this region may represent the product of the last breakup of the Rodinia supercontinent in the northern margin of the Yangtze Block at Neoproterozoic.展开更多
The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate cata...The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate catalog completeness,with events below MC being discarded,leading to the underutilization of the data.Detection probability is a more detailed measure of the catalog's completeness than MC;its use results in better model compatibility with data in seismic activity modeling and allows for more comprehensive utilization of seismic observation data across temporal,spatial,and magnitude dimensions.Using the magnitude-rank method and Maximum Curvature(MAXC)methods,we analyzed temporal variations in earthquake catalog completeness,finding that MC stabilized after 2010,which closely coincides with improvements in monitoring capabilities and the densification of seismic networks.Employing the probability-based magnitude of completeness(PMC)and entire magnitude range(EMR)methods,grounded in distinct foundational assumptions and computational principles,we analyzed the 2010-2023 earthquake catalog for the northern margin of the Ordos Block,aiming to assess the detection probability of earthquakes and the completeness of the earthquake catalog.The PMC method yielded the detection probability distribution for 76 stations in the distance-magnitude space.A scoring metric was designed based on station detection capabilities for small earthquakes in the near field.From the detection probabilities of stations,we inferred detection probabilities of the network for diff erent magnitude ranges and mapped the spatial distribution of the probability-based completeness magnitude.In the EMR method,we employed a segmented model fitted to the observed data to determine the detection probability and completeness magnitude for every grid point in the study region.We discussed the sample dependency and low-magnitude failure phenomena of the PMC method,noting the potential overestimation of detection probabilities for lower magnitudes and the underestimation of MC in areas with weaker monitoring capabilities.The results obtained via the two methods support these hypotheses.The assessment results indicate better monitoring capabilities on the eastern side of the study area but worse on the northwest side.The spatial distribution of network monitoring capabilities is uneven,correlating with the distribution of stations and showing significant diff erences in detection capabilities among diff erent stations.The truncation eff ects of data and station selection aff ected the evaluation results at the edges of the study area.Overall,both methods yielded detailed descriptions of the earthquake catalog,but careful selection of calculation parameters or adjustments based on the strengths of diff erent methods is necessary to correct potential biases.展开更多
Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan...Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan formations;the middle subgroup is formed by Yemahe, Wenshuihe and Shicaohe formations;the upper subgroup consists of Songziyuan and Wagangxi formations. Stromatolites developed very well in the carbonate rocks of each subgroup in Shennongjia Group. Based on descriptions of stromatolites macrotypes and their characteristics, this paper studied the formation environments, discussed the relationship among types, sizes, abundance of stromatolites and sedimentary environment, and established the formation and development pattern of stromatolites. As a result, this research also reveals the paleoenvironment and paleoclimate during the period of the Shennongjia Group deposited, which is beneficial to the study of paleoenvironment, paleogeography and paleoclimate, stratigraphic succession and regional correlation of the northern edge of Yangtze block. Stromatolites of Shennongjia Group are mainly conical, columnar, domal, wavy, stratiform and stromatolite reefs. The columnar and conical stromatolites are well developed. Conical stromatolites are mainly monomers, with a variety of pyramidal types, ranging in diameter from a few millimeters to several meters and formed in the high energy subtidal zone and tidal lagoon environment. Most of the columnar stromatolites are medium to small sizes implied a wide and gentle slope environment at that time. Stratiform (including wavy) stromatolites are larger scales and extends far away and distributed most widely in almost every horizon in the carbonate rocks. Stratiform stromatolites can be formed in low energy environments such as subtidal and intertidal zones and supratidal belts. Wavy stromatolites often developed in the hydrodynamic energy condition from weak energy intertidal zone gradually strengthened to the below of the high energy supratidal. Although stromatolite reefs can be a single or multiform combination, they developed mainly consisted of laminar or small walled columnar and large domal stromatolites. Shicaohe Formation also partially developed large domical stromatolites, the depositional environment is from the upper intertidal to supratidal zone. Stromatolite in Shennongjia Group usually appears as a combination of “Stratiform (wavy)-dome-columnar-coniform ” or “stratiform-dome-coniform-columnar-dome-stratiform ” vertieally, which represents the seawater depth from shallower to deeper or from shallow to deep and then to shallow again. These phenomenons generally reflected a stable sea level and companied with a high frequency oscillation. Comprehensive researches on the stratigraphy, sedimentary facies, sedimentary environment and the stromatolite types and their characteristics in the Shennongjia Group indicated that the Shennongjia Area is located on a gentle slope of carbonate platform in the passive continental edge, generally, i.e., one of warm and humid climate shallow water zone or/and a cold-drought climate, and had been experienced with eustatic cycles during the Shennongjia Group deposited.展开更多
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities...Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.展开更多
Objective The Yangtze craton collisional orogeny at ca. extensional events at ca. 1 experienced Paleoproterozoic 1.95-2.0 Ga and post-orogenic 85 Ga related to amalgamation of the Columbia (Nuna) supercontinent (Zh...Objective The Yangtze craton collisional orogeny at ca. extensional events at ca. 1 experienced Paleoproterozoic 1.95-2.0 Ga and post-orogenic 85 Ga related to amalgamation of the Columbia (Nuna) supercontinent (Zhao and Cawood, 2012). A ca. 2.15 Ga suprasubduction zone ophiolitic melange was recongized in the Archean- Paleoproterozoic Kongling Complex of the northern Yangtze craton (Han et al., 2017). However, the tectonic evolution in early Paleoproterozoic from 2.4 Ga to 2.2 Ga remains unclear. We report here the presence of a suite of Paleoproterozoic (2.2 Ga) granites in the Huangling dome, northern Yangtze craton, which may provide important insights into crustal growth processes in the craton prior to the assembly of Columbia.展开更多
This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block,on the geochemical compositions,zircon LA-ICP-MS U-Pb ages and Hf isotopic data.The Jiaoping...This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block,on the geochemical compositions,zircon LA-ICP-MS U-Pb ages and Hf isotopic data.The Jiaopingdu gabbro gives the age of 1721±5 Ma,the Caiyuanzi granite 1732±6 Ma and 1735±4 Ma,and the Wenjiacun porphyry granite 1713±4 Ma,suggesting nearly contemporaneous formation time of the gabbro and granite.The bimodal feature is demonstrated by the gabbro Si O2 content of 44.64-46.87 wt%and granite 73.81-77.03 wt%.In addition,the granite has high content of Si O2 and Na2 O+K2 O,low content of Al2 O3 and Ca O,enriched in REEs(except Eu)and Zr,Nb,Ga and Y,depleted in Sr,implying it belongs to A-type granite geochemistry and origin of within-plate environment.The zirconε(Hf)(t)of the granite and gabbro is at the range of 2-6,which is near the 2.0 Ga evolution line of the crust,implying the parent magma of the gabbro being derived from the depleted mantle and a small amount of crustal material,and the parent magma of the granite from partial melting of the juvenile crust and some ancient crustal material at the same time.Compared with 1.8-1.7 Ga magmatism during breakup of other cratons in the world,we can deduce that the Columbia has initially broken since ca.1.8 Ga,and some continental marginal or intra-continental rifts occurred at ca.1.73 Ga.展开更多
The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and break...The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).展开更多
Suizhou-Zaoyang area is located in the southern Qinling-Tongbai-Dabie Orogen, China. A combined research on U-Pb ages and Lu-Hf isotopes for detrital zircons from three meta-sedimentary rocks in the Wudang Group is re...Suizhou-Zaoyang area is located in the southern Qinling-Tongbai-Dabie Orogen, China. A combined research on U-Pb ages and Lu-Hf isotopes for detrital zircons from three meta-sedimentary rocks in the Wudang Group is reported. The upper Wudang Group has a major age population of ca. 750 Ma and a sub-major of ca. 860 Ma. But the lower part only yields one age peak at ca. 2.03 Ga. In situ Lu-Hf analyses of the young age group of ca. 750 Ma for zircons from the upper Wudang Group yield an average εHt(t) value of -8.6 and two-stage Hf model ages (TDM2) from 1837 to 2230 Ma, respectively. However, zircons from the lower Wudang Group give an average εHf(t) value of 4.5 and TDM1 of 2220±22 Ma, close to the timing of zircon crystallization. Thus, it is suggested that, in the study area, the continental crust grew during the middle Paleoproterozoic and reworked during the middle Neoproterozoic, which shows the affinity to the Dabie Orogen. In addition, in the lower Wudang Group, two metamorphic zircon ages of 1992±91 and 1999±61 Ma are consistent with that of the middle Paleoproterozoic metamorphism event in the northern Yangtze Block, which may represent the assemblage of the Columbia Supercontinent. On the basis of the U-Pb ages and Hf isotopes, it is proposed that Suizhou-Zaoyang area was involved in the subduction-collision event in the middle Paleoproterozoic and the Yangtze Block was one of the components of the Paleo-Mesoproterozoic supercontinent.展开更多
扬子板块的太古宙-古元古代基底出露十分有限,制约了对扬子早前寒武纪地质演化的认识。本次研究对扬子板块西南缘撮科地区的大红山群和昆阳群变沉积岩开展了碎屑锆石原位U-Pb年龄、Hf-O同位素及微量元素研究。测年结果显示,大红山群谐...扬子板块的太古宙-古元古代基底出露十分有限,制约了对扬子早前寒武纪地质演化的认识。本次研究对扬子板块西南缘撮科地区的大红山群和昆阳群变沉积岩开展了碎屑锆石原位U-Pb年龄、Hf-O同位素及微量元素研究。测年结果显示,大红山群谐和锆石年龄分布于3092~1786Ma之间,最年轻碎屑锆石年龄为1786Ma,限定大红山群最大沉积时代为古元古代晚期。昆阳群谐和锆石年龄分布于2874~1031Ma之间,最年轻碎屑锆石年龄为1031Ma,表明昆阳群最大沉积时代为中元古代晚期。除少量较年轻锆石(<1.75Ga)外,昆阳群和大红山群具有相似的年龄分布特征,两个主要的年龄峰为2.0~1.85Ga和2.4~2.2Ga。尽管古元古代碎屑锆石的年龄峰与撮科地区已报道的古元古代岩浆活动期次一致,但仅有少部分碎屑锆石的Hf-O同位素特征与撮科古元古代岩浆岩相似,大多数碎屑锆石Hf-O同位素组成与加拿大Rae克拉通古元古代变沉积岩中碎屑锆石相似,暗示古元古代碎屑物质可能仅少部分来自撮科地区已识别的古元古代岩浆岩,而大部分可能来自与Rae克拉通发育的古元古岩浆岩相似的源区。大红山群和昆阳群中1.9~1.03Ga的碎屑锆石可能来自扬子西南缘发育的古元古代晚期-中元古代晚期岩浆岩。结合前人的资料,我们认为我国撮科和越南北部的Phan Si Pan带经历了与加拿大Rae克拉通相似的古元古代演化过程,支持2.4~2.3Ga扬子西南缘卷入Arrowsmith造山事件,并与Rae克拉通一起参与哥伦比亚超大陆聚合过程的认识。展开更多
Based on deep geophysical detections, we have reconstructed the crustal structure from the eastern margin of the Tibetan Plateau to the Jiangnan-Xuefeng orogenic belt. The results suggest that the Yangtze Block was ov...Based on deep geophysical detections, we have reconstructed the crustal structure from the eastern margin of the Tibetan Plateau to the Jiangnan-Xuefeng orogenic belt. The results suggest that the Yangtze Block was overthrusted by crustal materials in its NW direction from the eastern Tibetan Plateau but in its SE direction from the Jiangnan orogen. These overthrusting effects control the crustal structure from the western Sichuan to the western area of the Jiangnan orogen-Xuefeng orogenic belt. The eastward extruded materials from the eastern Tibetan Plateau were blocked by the rigid basement in the Sichuan Basin, where upper-middle crust was overthrusted whereas the lower crust was underthrusted beneath the Sichuan Basin. The underthrusted unit was absorbed by crustal folding, shortening and thickening in the Yangtze Block, forming the Xiongpo and Longquan Mountains tectonic belts and resulting in the NW-directed thrusting of the Pujiang-Chengdu-Deyang fault, and the western hillsiden fault in the Longquan Mountain. These results provide resolution to the controversy where the eastward extrusion material from the Qinghai-Tibet Plateau had gone. Overall, that Yangtze Block was subjected to thrusting of the crustal materials from the orogenic belts over its both sides. This finding has implications for the study of the intracontinental orogenic mechanism in South China, the reconstruction of tectonic evolutionary history and the kinematics processes during the lateral extrusion of the Tibet Plateau.展开更多
ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze ...ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.展开更多
基金financially supported by the National Natural Science Foundation of China(grant No. 41402103,41502114 and 41372124)
文摘Objective The Huashan group(composed of the lower Hongshansi Formation and the upper Liufangzui Formation)is an important Neoproterozoic stratigraphic unit along the northern margin of the Yangtze Block.Previous documents have focused on the geochronological and geochemical aspects of the Neoproterozoic sedimentary basin in the Dahongshan region.However.
基金The research and development project of Beijing Disaster Prevention Technology Co.,Ltd.(FZKJYF202201)funded this work.
文摘Although the late Quaternary slip rate of the Northern Margin Fault of the Huaizhuo Basin(NFHB)was studied approximately 30 years ago using thermoluminescence and geomorphic methods,the underlying uncertainty cannot be neglected,considering the limitations resulting from age and displacement measurements.Accordingly,we attempted to re-estimate the late Quaternary slip rate of the NFHB using high-precision remote sensing image interpretation,large-scale geological and geomorphic mapping,paleoseismic analysis,and Quaternary geochronology testing.The results,based on stratigraphic dislocation and age constraint in the trenches,show that the present deformation of the NFHB has been dominated by the extension,with a vertical slip rate~0.04-0.11 mm/a.We estimate a vertical slip rate of~0.06 mm/a,with an R^(2) value of~0.91,which is much lower than the~0.5 mm/a result estimated previously.There are three possible reasons for this discrepancy.The fi rst is the limitation resulting from dating and displacement measurements in earlier studies;the second is the slip decomposition caused by multiple branches of the NFHB,which leads to the low slip rate observed at a single fault;and third possible explanation is that the fault may be locked at present with a low slip rate,which means that the earthquake hazard of the NFHB cannot be ignored,and more in-depth research,such as geodetic and intensive observations of earthquake precursors,is urgently needed.This discovery poses a new challenge for the active study of the NFHB and the northeast corner of the Ordos Plateau in the North China Block.
基金supported by the National Natural Science Foundation of China(40972060and41073026)the Hundred Talents Program of the Chinese Academy of Sciences
文摘The Zhouan ultramafic intrusion in the northern margin of the Yangtze Block is mainly composed of lherzolite. Zircon grains selected from lherzolite are irregular in shape with distinct oscillatory and sector zoning and have Th/U ratios ranging from 0.8 to 10.6, indicating a magmafic origin. The weighted average 206pb/238U age is 637±4 Ma (2σ, n=15), which can be considered as the crystallization age of the Zhouan intrusion. Zircon grains have δ18O values ranging from 5.2‰to 7.0‰, with an averaged value of 5.8±0.4‰(1 or, n=33), similar to the mantle δ18O value of zircon. Their 176Hf/177Hf(t) ratios range from 0.282410 to 0.282594 with εHf(t) values ranging from 1.3 to 7.6, lower than the corresponding value of the depleted mantle (~15), indicating an enriched mantle source. The enriched mantle source may have generated from a metasomatized lithospheric mantle with subducted slab. A number of -635 Ma mafic-ultramafic intrusions in the Suizao basin are associated with coeval bimodal volcanics of the Yaolinghe Formation, indicating a continental rift setting. The ~635 Ma magmafic event in this region may represent the product of the last breakup of the Rodinia supercontinent in the northern margin of the Yangtze Block at Neoproterozoic.
基金funded by Director Fund of the Inner Mongolia Autonomous Region Seismological Bureau(No.2023GG02,2023MS05)the Inner Mongolia Natural Science Foundation(No.2024MS04021)。
文摘The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate catalog completeness,with events below MC being discarded,leading to the underutilization of the data.Detection probability is a more detailed measure of the catalog's completeness than MC;its use results in better model compatibility with data in seismic activity modeling and allows for more comprehensive utilization of seismic observation data across temporal,spatial,and magnitude dimensions.Using the magnitude-rank method and Maximum Curvature(MAXC)methods,we analyzed temporal variations in earthquake catalog completeness,finding that MC stabilized after 2010,which closely coincides with improvements in monitoring capabilities and the densification of seismic networks.Employing the probability-based magnitude of completeness(PMC)and entire magnitude range(EMR)methods,grounded in distinct foundational assumptions and computational principles,we analyzed the 2010-2023 earthquake catalog for the northern margin of the Ordos Block,aiming to assess the detection probability of earthquakes and the completeness of the earthquake catalog.The PMC method yielded the detection probability distribution for 76 stations in the distance-magnitude space.A scoring metric was designed based on station detection capabilities for small earthquakes in the near field.From the detection probabilities of stations,we inferred detection probabilities of the network for diff erent magnitude ranges and mapped the spatial distribution of the probability-based completeness magnitude.In the EMR method,we employed a segmented model fitted to the observed data to determine the detection probability and completeness magnitude for every grid point in the study region.We discussed the sample dependency and low-magnitude failure phenomena of the PMC method,noting the potential overestimation of detection probabilities for lower magnitudes and the underestimation of MC in areas with weaker monitoring capabilities.The results obtained via the two methods support these hypotheses.The assessment results indicate better monitoring capabilities on the eastern side of the study area but worse on the northwest side.The spatial distribution of network monitoring capabilities is uneven,correlating with the distribution of stations and showing significant diff erences in detection capabilities among diff erent stations.The truncation eff ects of data and station selection aff ected the evaluation results at the edges of the study area.Overall,both methods yielded detailed descriptions of the earthquake catalog,but careful selection of calculation parameters or adjustments based on the strengths of diff erent methods is necessary to correct potential biases.
基金This research was co-supported by the National Key Research and Development Program of China (2016YFC0601001),the National Natural Science Foundation of China (41472082)China Geological Survey Projects (DD20160120-01)+1 种基金Globe Geopark of Shennongjia. We are grateful to the leaders of Shennongjia National Park and Mr. Zhixian Wang,Quan Zhong gave great assistances and warmly aidsthe field survey was under careful direction by Mr. Lesheng Qu from Hubei Geological Survey,Mr. Yuansheng Geng from Institute of Geology,CAGS. Sincere thanks are also given Mr. Zejiu Wang,Xin Shang and Mrs. Xiulan Ma from Chinese Academy of Geological Sciences (CAGS) and All China Commission of Stratigraphy.
文摘Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan formations;the middle subgroup is formed by Yemahe, Wenshuihe and Shicaohe formations;the upper subgroup consists of Songziyuan and Wagangxi formations. Stromatolites developed very well in the carbonate rocks of each subgroup in Shennongjia Group. Based on descriptions of stromatolites macrotypes and their characteristics, this paper studied the formation environments, discussed the relationship among types, sizes, abundance of stromatolites and sedimentary environment, and established the formation and development pattern of stromatolites. As a result, this research also reveals the paleoenvironment and paleoclimate during the period of the Shennongjia Group deposited, which is beneficial to the study of paleoenvironment, paleogeography and paleoclimate, stratigraphic succession and regional correlation of the northern edge of Yangtze block. Stromatolites of Shennongjia Group are mainly conical, columnar, domal, wavy, stratiform and stromatolite reefs. The columnar and conical stromatolites are well developed. Conical stromatolites are mainly monomers, with a variety of pyramidal types, ranging in diameter from a few millimeters to several meters and formed in the high energy subtidal zone and tidal lagoon environment. Most of the columnar stromatolites are medium to small sizes implied a wide and gentle slope environment at that time. Stratiform (including wavy) stromatolites are larger scales and extends far away and distributed most widely in almost every horizon in the carbonate rocks. Stratiform stromatolites can be formed in low energy environments such as subtidal and intertidal zones and supratidal belts. Wavy stromatolites often developed in the hydrodynamic energy condition from weak energy intertidal zone gradually strengthened to the below of the high energy supratidal. Although stromatolite reefs can be a single or multiform combination, they developed mainly consisted of laminar or small walled columnar and large domal stromatolites. Shicaohe Formation also partially developed large domical stromatolites, the depositional environment is from the upper intertidal to supratidal zone. Stromatolite in Shennongjia Group usually appears as a combination of “Stratiform (wavy)-dome-columnar-coniform ” or “stratiform-dome-coniform-columnar-dome-stratiform ” vertieally, which represents the seawater depth from shallower to deeper or from shallow to deep and then to shallow again. These phenomenons generally reflected a stable sea level and companied with a high frequency oscillation. Comprehensive researches on the stratigraphy, sedimentary facies, sedimentary environment and the stromatolite types and their characteristics in the Shennongjia Group indicated that the Shennongjia Area is located on a gentle slope of carbonate platform in the passive continental edge, generally, i.e., one of warm and humid climate shallow water zone or/and a cold-drought climate, and had been experienced with eustatic cycles during the Shennongjia Group deposited.
文摘Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.
基金supported by the funded project of the China Geological Survey(grants No.12120113061700,121201009000150013 and DD20160029)
文摘Objective The Yangtze craton collisional orogeny at ca. extensional events at ca. 1 experienced Paleoproterozoic 1.95-2.0 Ga and post-orogenic 85 Ga related to amalgamation of the Columbia (Nuna) supercontinent (Zhao and Cawood, 2012). A ca. 2.15 Ga suprasubduction zone ophiolitic melange was recongized in the Archean- Paleoproterozoic Kongling Complex of the northern Yangtze craton (Han et al., 2017). However, the tectonic evolution in early Paleoproterozoic from 2.4 Ga to 2.2 Ga remains unclear. We report here the presence of a suite of Paleoproterozoic (2.2 Ga) granites in the Huangling dome, northern Yangtze craton, which may provide important insights into crustal growth processes in the craton prior to the assembly of Columbia.
基金jointly project is jointly supported by the Key Research and Development Program of China(grant No.2016YFC0601001)the China Geological Survey project(DD20190002 and DD20190005)National Natural Science Foundation of China(grant No.41472082)。
文摘This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block,on the geochemical compositions,zircon LA-ICP-MS U-Pb ages and Hf isotopic data.The Jiaopingdu gabbro gives the age of 1721±5 Ma,the Caiyuanzi granite 1732±6 Ma and 1735±4 Ma,and the Wenjiacun porphyry granite 1713±4 Ma,suggesting nearly contemporaneous formation time of the gabbro and granite.The bimodal feature is demonstrated by the gabbro Si O2 content of 44.64-46.87 wt%and granite 73.81-77.03 wt%.In addition,the granite has high content of Si O2 and Na2 O+K2 O,low content of Al2 O3 and Ca O,enriched in REEs(except Eu)and Zr,Nb,Ga and Y,depleted in Sr,implying it belongs to A-type granite geochemistry and origin of within-plate environment.The zirconε(Hf)(t)of the granite and gabbro is at the range of 2-6,which is near the 2.0 Ga evolution line of the crust,implying the parent magma of the gabbro being derived from the depleted mantle and a small amount of crustal material,and the parent magma of the granite from partial melting of the juvenile crust and some ancient crustal material at the same time.Compared with 1.8-1.7 Ga magmatism during breakup of other cratons in the world,we can deduce that the Columbia has initially broken since ca.1.8 Ga,and some continental marginal or intra-continental rifts occurred at ca.1.73 Ga.
文摘The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).
基金supported by the National Natural Sciences Foundation of China(Grants Nos.41172189,40972137,and 41402179)
文摘Suizhou-Zaoyang area is located in the southern Qinling-Tongbai-Dabie Orogen, China. A combined research on U-Pb ages and Lu-Hf isotopes for detrital zircons from three meta-sedimentary rocks in the Wudang Group is reported. The upper Wudang Group has a major age population of ca. 750 Ma and a sub-major of ca. 860 Ma. But the lower part only yields one age peak at ca. 2.03 Ga. In situ Lu-Hf analyses of the young age group of ca. 750 Ma for zircons from the upper Wudang Group yield an average εHt(t) value of -8.6 and two-stage Hf model ages (TDM2) from 1837 to 2230 Ma, respectively. However, zircons from the lower Wudang Group give an average εHf(t) value of 4.5 and TDM1 of 2220±22 Ma, close to the timing of zircon crystallization. Thus, it is suggested that, in the study area, the continental crust grew during the middle Paleoproterozoic and reworked during the middle Neoproterozoic, which shows the affinity to the Dabie Orogen. In addition, in the lower Wudang Group, two metamorphic zircon ages of 1992±91 and 1999±61 Ma are consistent with that of the middle Paleoproterozoic metamorphism event in the northern Yangtze Block, which may represent the assemblage of the Columbia Supercontinent. On the basis of the U-Pb ages and Hf isotopes, it is proposed that Suizhou-Zaoyang area was involved in the subduction-collision event in the middle Paleoproterozoic and the Yangtze Block was one of the components of the Paleo-Mesoproterozoic supercontinent.
文摘扬子板块的太古宙-古元古代基底出露十分有限,制约了对扬子早前寒武纪地质演化的认识。本次研究对扬子板块西南缘撮科地区的大红山群和昆阳群变沉积岩开展了碎屑锆石原位U-Pb年龄、Hf-O同位素及微量元素研究。测年结果显示,大红山群谐和锆石年龄分布于3092~1786Ma之间,最年轻碎屑锆石年龄为1786Ma,限定大红山群最大沉积时代为古元古代晚期。昆阳群谐和锆石年龄分布于2874~1031Ma之间,最年轻碎屑锆石年龄为1031Ma,表明昆阳群最大沉积时代为中元古代晚期。除少量较年轻锆石(<1.75Ga)外,昆阳群和大红山群具有相似的年龄分布特征,两个主要的年龄峰为2.0~1.85Ga和2.4~2.2Ga。尽管古元古代碎屑锆石的年龄峰与撮科地区已报道的古元古代岩浆活动期次一致,但仅有少部分碎屑锆石的Hf-O同位素特征与撮科古元古代岩浆岩相似,大多数碎屑锆石Hf-O同位素组成与加拿大Rae克拉通古元古代变沉积岩中碎屑锆石相似,暗示古元古代碎屑物质可能仅少部分来自撮科地区已识别的古元古代岩浆岩,而大部分可能来自与Rae克拉通发育的古元古岩浆岩相似的源区。大红山群和昆阳群中1.9~1.03Ga的碎屑锆石可能来自扬子西南缘发育的古元古代晚期-中元古代晚期岩浆岩。结合前人的资料,我们认为我国撮科和越南北部的Phan Si Pan带经历了与加拿大Rae克拉通相似的古元古代演化过程,支持2.4~2.3Ga扬子西南缘卷入Arrowsmith造山事件,并与Rae克拉通一起参与哥伦比亚超大陆聚合过程的认识。
基金supported by the National Natural Science Foundation of China(Grant Nos.41574093,41774114)SinoProbe-02(Grant No.A1011B)
文摘Based on deep geophysical detections, we have reconstructed the crustal structure from the eastern margin of the Tibetan Plateau to the Jiangnan-Xuefeng orogenic belt. The results suggest that the Yangtze Block was overthrusted by crustal materials in its NW direction from the eastern Tibetan Plateau but in its SE direction from the Jiangnan orogen. These overthrusting effects control the crustal structure from the western Sichuan to the western area of the Jiangnan orogen-Xuefeng orogenic belt. The eastward extruded materials from the eastern Tibetan Plateau were blocked by the rigid basement in the Sichuan Basin, where upper-middle crust was overthrusted whereas the lower crust was underthrusted beneath the Sichuan Basin. The underthrusted unit was absorbed by crustal folding, shortening and thickening in the Yangtze Block, forming the Xiongpo and Longquan Mountains tectonic belts and resulting in the NW-directed thrusting of the Pujiang-Chengdu-Deyang fault, and the western hillsiden fault in the Longquan Mountain. These results provide resolution to the controversy where the eastward extrusion material from the Qinghai-Tibet Plateau had gone. Overall, that Yangtze Block was subjected to thrusting of the crustal materials from the orogenic belts over its both sides. This finding has implications for the study of the intracontinental orogenic mechanism in South China, the reconstruction of tectonic evolutionary history and the kinematics processes during the lateral extrusion of the Tibet Plateau.
基金supported by the National Natural Science Foundation of China (Nos. 40773019 and 40821061)the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No. B07039)
文摘ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.