First of all,using the GPS velocity field from campaign GPS measurements implemented by CMONC( C hina Crustal Movement Observation) a nd TEONC( C hina Tectonic Environment Observation Networks) u p to 2013, w e analyz...First of all,using the GPS velocity field from campaign GPS measurements implemented by CMONC( C hina Crustal Movement Observation) a nd TEONC( C hina Tectonic Environment Observation Networks) u p to 2013, w e analyzed the background of regional crustal horizontal movement and deformation before the M S7. 3 Yutian,Xinjiang earthquake on February 12,2014. Then,by comparing this to the vertical movement from leveling measurements,we studied the crustal movement deformation and the state of strain accumulation on the northeastern edge of Qinghai-Tibetan block.Finally,we investigated the possible effects on the earthquake activity of the northeastern edge of Tibet from the M S7. 3 Yutian earthquake. The result indicates that,the M S7. 3Yutian earthquake occurred against the background of strong tectonic movement and intensive intracontinental crustal differential movement on the edges of tectonic blocks in western China,and also that it happened in the period of the strong tectonic stress field in Qinghai-Tibetan block and its edges. The sinistral strike-slip and stress transfer of the Yutian M S7. 3 earthquake may accelerate the rupture of fault segments with high strain accumulation at the northeastern edge of Qinghai-Tibetan block( especially in Qilian Mountain fault zone,and border area of Gansu,Qinghai and Sichuan provinces on the south of western Qinling).展开更多
The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geologica...The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geological data. The main results are summarized as follows: (1) The geotectonic subdivisions and the characteristics of main deep and large faults in the northeastern margin of the Qinghai-Tibetan plateau are presented; (2) The general features of the Moho are obtained mainly based on artificial seismic sounding data; (3) There exists well corresponding relation between surface faults and some features of the Moho, which suggests that such complex crustal structure might be the preparation environment of strong earthquakes.展开更多
Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth ...Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth and expansion of the Qinghai-Tibetan Plateau.Since nearly 10 Ma,some significant and typical fold thrust belt have been formed.The spatial-temporal evolution of these fold-thrust belts and the characteristics of surface deformations are significant issues in geodynamics.In this paper,we use the elastoplastic finite element model with considering the contact nonlinearity to study the spatialtemporal evolution of the fold-thrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau,with particular attention to the details of the relationship between the depth and the shallow,the spatialtemporal order,and the characteristics of the surface deformation,etc.,in order to make a relatively complete mechanical interpretation of the spatial-temporal evolution of the foldthrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau from the perspective of geodynamics.展开更多
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high ...The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area, and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure, shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile (L1) increases from -43 km in the western margin of Ordos Block to -56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s^-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arc-like tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s^-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies (LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10-0.20 krn s^-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2 (Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L 1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation. Moreover, there are low-velocity zones with altemative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15-0.25 km s^-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 kin, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.展开更多
In this study, the relative gravity data(2012 e2015), GPS data-derived horizontal deformation(2011 e2014) and the background vertical deformation from the leveling measurements(1970 e2011) in the northeastern margin o...In this study, the relative gravity data(2012 e2015), GPS data-derived horizontal deformation(2011 e2014) and the background vertical deformation from the leveling measurements(1970 e2011) in the northeastern margin of Tibetan Plateau were processed to systematically analysis the mechanism of temporalespatial patterns and the relationship with Menyuan Ms6.4 earthquake. It can be summarized in the following: 1) The regional gravity changes, the GPS and the vertical deformational showed an intense spatial relationship: the gravity increased along with the direction of horizontal movement, and decreased with the crustal uplift and vice versa, which reflected the inherited characteristics of geotectonic activities. 2) The crustal deformations were closely related to the active faults. The contour lines of gravity changes and vertical deformation were generally along with the Qilian-Haiyuan fault(strike is NWW), and the crustal horizontal deformation showed left-lateral strike slip motion near the Qilian-Haiyuan fault. 3) Menyuan Ms6.4 earthquake occurred in the high negative gravity variation area and a high gradient formed in regions, positive and negative variation of gravity amount to 110 m Gal.Specifically, a borderline of positive and negative gravity located in the south of epicenter along the north edge of Qilianshan fault and Lenglongling fault, as well as the vertical and/or horizontal deformation is intensely. The extrusion deformation, surface compression rate and gravity changes were obvious near the epicenter of 2016 Menyuan Earthquake.展开更多
Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution cha...Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution characteristics of deformation anomalies in the northeastern margin of the Qinghai-Tibetan Plateau before and after the Menyuan M_(S)6.9 earthquake were studied by using the Fisher statistical test method. By analyzing the characteristics of these anomalies, we found that: 1) The deformation anomalies are mainly distributed in the marginal front area of the Qinghai-Tibetan Plateau, where short-term deformation anomalies are prone to occur due to a high gradient of gravity;2) The deformation anomalies along the northeastern margin of the Qinghai-Tibetan Plateau are characterized by spatial propagation, and the migration rate is about 2.4 km/d. The propagation pattern is counterclockwise, consistent with the migration direction of M_(S)≥ 6.0 earthquakes;3) The time and location of the Menyuan earthquake are related to the group migration of earthquakes with M_(S)≥ 6.0. Finally,based on the results of gravity field variation and the theory of crust stress wave, the law of deformation anomaly distribution was discussed. We suggest that both the deformation propagation along the northeastern margin of the Qinghai-Tibetan Plateau and the earthquake migration are possibly associated with the variation of the stress field caused by subsurface mass flow.展开更多
基金sponsored by the Special Found for the Earthquake Scientific Research of China(201208009)the Earthquake Forecast and Prediction System Program of China Earthquake Administration in 2014
文摘First of all,using the GPS velocity field from campaign GPS measurements implemented by CMONC( C hina Crustal Movement Observation) a nd TEONC( C hina Tectonic Environment Observation Networks) u p to 2013, w e analyzed the background of regional crustal horizontal movement and deformation before the M S7. 3 Yutian,Xinjiang earthquake on February 12,2014. Then,by comparing this to the vertical movement from leveling measurements,we studied the crustal movement deformation and the state of strain accumulation on the northeastern edge of Qinghai-Tibetan block.Finally,we investigated the possible effects on the earthquake activity of the northeastern edge of Tibet from the M S7. 3 Yutian earthquake. The result indicates that,the M S7. 3Yutian earthquake occurred against the background of strong tectonic movement and intensive intracontinental crustal differential movement on the edges of tectonic blocks in western China,and also that it happened in the period of the strong tectonic stress field in Qinghai-Tibetan block and its edges. The sinistral strike-slip and stress transfer of the Yutian M S7. 3 earthquake may accelerate the rupture of fault segments with high strain accumulation at the northeastern edge of Qinghai-Tibetan block( especially in Qilian Mountain fault zone,and border area of Gansu,Qinghai and Sichuan provinces on the south of western Qinling).
基金National Key Research Development Project(95-13-02-02).Contribution No.LC2000052,Lanzhou Institute of Seismology,China SeismologicalBureau.
文摘The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geological data. The main results are summarized as follows: (1) The geotectonic subdivisions and the characteristics of main deep and large faults in the northeastern margin of the Qinghai-Tibetan plateau are presented; (2) The general features of the Moho are obtained mainly based on artificial seismic sounding data; (3) There exists well corresponding relation between surface faults and some features of the Moho, which suggests that such complex crustal structure might be the preparation environment of strong earthquakes.
基金financially supported by the National Science Foundation of China (42074117)supported by the Fundamental Research Funds for the Central Universities。
文摘Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth and expansion of the Qinghai-Tibetan Plateau.Since nearly 10 Ma,some significant and typical fold thrust belt have been formed.The spatial-temporal evolution of these fold-thrust belts and the characteristics of surface deformations are significant issues in geodynamics.In this paper,we use the elastoplastic finite element model with considering the contact nonlinearity to study the spatialtemporal evolution of the fold-thrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau,with particular attention to the details of the relationship between the depth and the shallow,the spatialtemporal order,and the characteristics of the surface deformation,etc.,in order to make a relatively complete mechanical interpretation of the spatial-temporal evolution of the foldthrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau from the perspective of geodynamics.
基金supported by the Special Projects of Scientific Research of the Earthquake Industry (Grant No. 201408023)the National Natural Science Foundation of China (Grant Nos. 41474076 & 41474077)
文摘The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area, and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure, shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile (L1) increases from -43 km in the western margin of Ordos Block to -56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s^-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arc-like tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s^-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies (LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10-0.20 krn s^-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2 (Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L 1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation. Moreover, there are low-velocity zones with altemative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15-0.25 km s^-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 kin, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.
基金funded by the directional earthquake tracking task offered by China Earthquake Administration (2017010203)the National Natural Science Foundation of China (No. 41274083)
文摘In this study, the relative gravity data(2012 e2015), GPS data-derived horizontal deformation(2011 e2014) and the background vertical deformation from the leveling measurements(1970 e2011) in the northeastern margin of Tibetan Plateau were processed to systematically analysis the mechanism of temporalespatial patterns and the relationship with Menyuan Ms6.4 earthquake. It can be summarized in the following: 1) The regional gravity changes, the GPS and the vertical deformational showed an intense spatial relationship: the gravity increased along with the direction of horizontal movement, and decreased with the crustal uplift and vice versa, which reflected the inherited characteristics of geotectonic activities. 2) The crustal deformations were closely related to the active faults. The contour lines of gravity changes and vertical deformation were generally along with the Qilian-Haiyuan fault(strike is NWW), and the crustal horizontal deformation showed left-lateral strike slip motion near the Qilian-Haiyuan fault. 3) Menyuan Ms6.4 earthquake occurred in the high negative gravity variation area and a high gradient formed in regions, positive and negative variation of gravity amount to 110 m Gal.Specifically, a borderline of positive and negative gravity located in the south of epicenter along the north edge of Qilianshan fault and Lenglongling fault, as well as the vertical and/or horizontal deformation is intensely. The extrusion deformation, surface compression rate and gravity changes were obvious near the epicenter of 2016 Menyuan Earthquake.
基金sponsored by the National Natural Science Foundation of China (41330314)。
文摘Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution characteristics of deformation anomalies in the northeastern margin of the Qinghai-Tibetan Plateau before and after the Menyuan M_(S)6.9 earthquake were studied by using the Fisher statistical test method. By analyzing the characteristics of these anomalies, we found that: 1) The deformation anomalies are mainly distributed in the marginal front area of the Qinghai-Tibetan Plateau, where short-term deformation anomalies are prone to occur due to a high gradient of gravity;2) The deformation anomalies along the northeastern margin of the Qinghai-Tibetan Plateau are characterized by spatial propagation, and the migration rate is about 2.4 km/d. The propagation pattern is counterclockwise, consistent with the migration direction of M_(S)≥ 6.0 earthquakes;3) The time and location of the Menyuan earthquake are related to the group migration of earthquakes with M_(S)≥ 6.0. Finally,based on the results of gravity field variation and the theory of crust stress wave, the law of deformation anomaly distribution was discussed. We suggest that both the deformation propagation along the northeastern margin of the Qinghai-Tibetan Plateau and the earthquake migration are possibly associated with the variation of the stress field caused by subsurface mass flow.