期刊文献+
共找到5,490篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials 被引量:1
1
作者 Fengling Chen Jiannan Lin +8 位作者 Yifan Chen Binbin Dong Chujun Yin Siying Tian Dapeng Sun Jing Xie Zhenyu Zhang Hong Li Chaobo Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期683-690,共8页
Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capaci... Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application.Herein,a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the electrochemical performance is improved.The modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of~233 m Ah/g at0.1 C and 174 m Ah/g at 1 C after 150 cycles in the voltage range of 3.0 V–4.4 V at 45℃,and it also exhibits an enhanced rate capability with 118 m Ah/g at 5 C.The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics. 展开更多
关键词 LiNi0.88Mn0.03Co0.09O2 tantalum oxide surface coating lithium-ion battery cathode material
在线阅读 下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
2
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering cathode materials Ion migration
在线阅读 下载PDF
Optimization Strategies of Na_(3)V_(2)(PO_(4))_(3) Cathode Materials for Sodium‑Ion Batteries
3
作者 Jiawen Hu Xinwei Li +4 位作者 Qianqian Liang Li Xu Changsheng Ding Yu Liu Yanfeng Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期204-251,共48页
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab... Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs. 展开更多
关键词 Sodium-ion batteries Na_(3)V_(2)(PO_(4))_(3) cathode materials Electrochemical performance Optimization strategies
在线阅读 下载PDF
Facile regeneration of spent lithium-ion battery cathode materials via tunable oxidization and reduction strategy
4
作者 Xue-hu ZHONG Wen-qing QIN +1 位作者 Jiang ZHOU Jun-wei HAN 《Transactions of Nonferrous Metals Society of China》 2025年第2期653-668,共16页
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t... A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles. 展开更多
关键词 spent lithium-ion batteries direct regeneration cathode materials ROASTING circular economy
在线阅读 下载PDF
Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries
5
作者 Na Li Wenxue Wang +3 位作者 Peng Wang Zhanying Sun Xinlong Tian Xiaodong Shi 《Chinese Chemical Letters》 2025年第3期476-482,共7页
Sluggish conversion reaction kinetics and spontaneous shuttle effect of lithium polysulfides(LiPSs)are deemed as the two big mountains that hinder the practical application of lithium-sulfur batteries(LSBs).Herein,dua... Sluggish conversion reaction kinetics and spontaneous shuttle effect of lithium polysulfides(LiPSs)are deemed as the two big mountains that hinder the practical application of lithium-sulfur batteries(LSBs).Herein,dual-defect engineering strategy is implemented by introducing boron-doping and phosphorusvacancy sites with MoP@NC composite as the precursor.Based on the experimental characterizations and theoretical calculations,B-MoP_(1-x)@NC-based electrode presents low oxidation potential,high lithium diffusivity,small Tafel slope and strong adsorption capability for polysulfides,which is beneficial to enhance the adsorption capability for LiPSs,reduce the lithium diffusion energy barriers and Gibbs free energy for the conversion reactions of LiPSs.As demonstrated,the corresponding Li-S/B-MoP1-x@NC batteries can remain high reversible capacity of 753 mAh/g at 0.5 C after 300 cycles,and keep a stable capacity of 520 mAh/g at 0.5 C after 100 cycles even at the high-loading content of 5.1mg/cm^(2).According to the results of in-situ UV–vis spectra,the satisfactory battery performance majorly originates from the existence of dual-defect characteristics in B-MoP1-x@NC catalyst,which effectively promotes the conversion reaction kinetics of LiPSs,and restrains the shuttle behavior of LiPSs.The key ideas of this work will enlighten the development of catalytic cathode materials for sulfur-based secondary batteries. 展开更多
关键词 Dual-defect engineering Boron doping Phosphorus vacancy Catalytic cathode materials Lithium-sulfur batteries
原文传递
Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries
6
作者 Yirong Xiao Le Yang +5 位作者 Chaoyuan Zeng Ze Hua Shuangquan Qu Niaz Ahmad Ruiwen Shao Wen Yang 《Journal of Energy Chemistry》 2025年第3期377-385,共9页
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ... Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn0_(.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles. 展开更多
关键词 Single crystal nickel-rich oxide cathode Lattice stretches and distortions Reaction heterogeneity Percolation network All-solid-state lithium batteries
在线阅读 下载PDF
Research progresses on cathode materials of aqueous zinc-ion batteries 被引量:2
7
作者 Zengyuan Fan Jiawei Wang +3 位作者 Yunpeng Wu Xuedong Yan Dongmei Dai Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期237-264,I0005,共29页
Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold ... Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold a pivotal role in the forthcoming energy storage technologies revolution.In recent years,aqueous zinc-ion batteries(AZIBs)have garnered substantial attention as a compelling candidate for large-scale energy storage systems,primarily attributable to their advantageous featu res encompassing cost-effectiveness,environmental sustainability,and robust safety profiles.Currently,one of the primary factors hindering the further development of AZIBs originates from the challenge of cathode materials.Specifically,the three mainstream types of mainstream cathode materials,in terms of manganese-based compounds,vanadium-based compounds and Prussian blue analogues,surfer from the dissolution of Mn~(2+),in the low discharge voltage,and the low specific capacity,respectively.Several strategies have been developed to compensation the above intrinsic defects for these cathode materials,including the ionic doping,defect engineering,and materials match.Accordingly,this review first provides a systematic summarization of the zinc storage mechanism in AZIBs,following by the inherent merit and demerit of three kind of cathode materials during zinc storage analyzed from their structure characteristic,and then the recent development of critical strategies towards the intrinsic insufficiency of these cathode materials.In this review,the methodologies aimed at enhancing the efficacy of manganese-based and vanadium-based compounds are emphasis emphasized.Additionally,the article outlines the future prospective directions as well as strategic proposal for cathode materials in AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries cathode materials Optimization strategies
在线阅读 下载PDF
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:2
8
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type cathode materials Sodium-ion batteries Layered structure
在线阅读 下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
9
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
在线阅读 下载PDF
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
10
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation Structural stability Lithium-ion battery
在线阅读 下载PDF
Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries
11
作者 Yuan Yuan Si Wu +2 位作者 Xiaoxue Song Jin Yong Lee Baotao Kang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期14-31,共18页
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay... Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other vip ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs. 展开更多
关键词 layered cathode materials modifying strategies structure regulation zinc-ion batteries
在线阅读 下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
12
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary cathode materials Electrochemical Performance
在线阅读 下载PDF
A review:Modification strategies of nickel-rich layer structure cathode(Ni≥0.8)materials for lithium ion power batteries 被引量:12
13
作者 Haijian Lv Chunli Li +2 位作者 Zhikun Zhao Borong Wu Daobin Mu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期435-450,共16页
Lithium ion power batteries have undoubtedly become one of the most promising rechargeable batteries at present;nonetheless,they still suffer from the challenges such as requirement of even higher energy density and c... Lithium ion power batteries have undoubtedly become one of the most promising rechargeable batteries at present;nonetheless,they still suffer from the challenges such as requirement of even higher energy density and capacity retention.Nickel-rich layer oxides(Ni≥0.8)become ideal cathode materials to achieve the high specific capacity.Integration of optimization of synthesis process and modification of crystal structure to suppress the capacity fading can obviously improve the performance of the lithium ion batteries.This review presents the recent modification strategies of the nickel-rich layered oxide materials.Unlike in previous reviews and related papers,the specific mechanism about each type of the modification strategies is specially discussed in detail,which is mainly about inhibiting the anisotropic lattice strain and adjusting the cation mixing degree to maintain crystal structure.Based on the recent progress,the prospects and challenges of the modified nickel-rich layer cathodes to upgrade the property of lithium ion batteries are also comprehensively analyzed,and the potential applications in the field of plug-in hybrid vehicles and electric vehicles are further discussed. 展开更多
关键词 nickel-rich layer cathodes Structural stability Modification strategies Power batteries
在线阅读 下载PDF
Recent progress in synthesis and surface modification of nickel-rich layered oxide cathode materials for lithium-ion batteries 被引量:2
14
作者 Jing Li Wentao Zhong +2 位作者 Qiang Deng Qimeng Zhang Chenghao Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期102-146,共45页
Nickel-rich layered oxides have been identified as the most promising commercial cathode materials for lithium-ion batteries(LIBs)for their high theoretical specific capacity.However,the poor cycling stability of nick... Nickel-rich layered oxides have been identified as the most promising commercial cathode materials for lithium-ion batteries(LIBs)for their high theoretical specific capacity.However,the poor cycling stability of nickel-rich cathode materials is one of the major barriers for the large-scale usage of LIBs.The existing obstructions that suppress the capacity degradation of nickel-rich cathode materials are as a result of phase transition,mechanical instability,intergranular cracks,side reaction,oxygen loss,and thermal instability during cycling.Core–shell structures,oxidating precursors,electrolyte additives,doping/coating and synthesizing single crystals have been identified as effective methods to improve cycling stability of nickel-rich cathode materials.Herein,recent progress of surface modification,e.g.coating and doping,in nickel-rich cathode materials are summarized based on Periodic table to provide a clear understanding.Electrochemical performances and mechanisms of modified structure are discussed in detail.It is hoped that an overview of synthesis and surface modification can be presented and a perspective of nickel-rich materials in LIBs can be given. 展开更多
关键词 nickel-rich layered oxides capacity degradation surface modification single-crystal cathode
在线阅读 下载PDF
Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials 被引量:2
15
作者 Longshan Li Dingming Wang +7 位作者 Gaojie Xu Qian Zhou Jun Ma Jianjun Zhang Aobing Du Zili Cui Xinhong Zhou Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期280-292,共13页
In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2... In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA))have been arousing great interests to improve the energy density of LIBs.However,these Nirich cathodes always suffer from rapid capacity degradation induced by unstable cathode-electrolyte interphase(CEI)layer and destruction of bulk crystal structure.Therefore,varied electrode/electrolyte interface engineering strategies(such as electrolyte formulation,material coating or doping)have been developed for Ni-rich cathodes protection.Among them,developing electrolyte functional additives has been proven to be a simple,effective,and economic method to improve the cycling stability of Nirich cathodes.This is achieved by removing unfavorable species(such as HF,H_(2)O)or constructing a stable and protective CEI layer against unfavorable reactive species(such as HF,H_(2)O).Herein,this review mainly introduces the varied classes of electrolyte functional additives and their working mechanism for interfacial engineering of Ni-rich cathodes.Especially,key favorable species for stabilizing CEI layer are summarized.More importantly,we put forward perspectives for screening and customizing ideal functional additives for high performance Ni-rich cathodes based LIBs. 展开更多
关键词 nickel-rich layered oxide cathode Electrolyte additive Functional group Working mechanism cathode-electrolyte interphase(CEI)
在线阅读 下载PDF
Influences of transition metal on structural and electrochemical properties of Li[Ni_xCo_yMn_z]O_2(0.6≤x≤0.8) cathode materials for lithium-ion batteries 被引量:5
16
作者 潘成迟 朱裔荣 +5 位作者 杨应昌 侯红帅 景明俊 宋维鑫 杨旭明 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1396-1402,共7页
Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observ... Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observed from X-ray diffraction(XRD)increases with decreasing the Ni content or increasing the Co content.The scanning electron microscopy(SEM) images reveal that the small primary particles are agglomerated to form the secondary ones.As the Mn content increases,the primary and secondary particles become larger and the resulted particle size for the Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 is uniformly distributed in the range of100-300 nm.Although the initial discharge capacity of the Li/Li[NixCoyMn2]O2 cells reduces with decreasing the Ni content,the cyclic performance and rate capability are improved with higher Mn or Co content.The Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 can deliver excellent cyclability with a capacity retention of 97.1%after 50 cycles. 展开更多
关键词 Li[NixCoyMnz]O2 electrochemical performance cathode material lithium-ion battery
在线阅读 下载PDF
Grinding sol gel synthesis and electrochemical performance of mesoporous Li_3V_2(PO_4)_3 cathode materials 被引量:3
17
作者 刘国聪 刘又年 刘素琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期439-444,共6页
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint... Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature. 展开更多
关键词 Li3Vz(PO4)3 cathode material mesoporous structure grinding-sol-gel method electrochemical performance
在线阅读 下载PDF
Synthesis and electrochemical properties of LiNi_(0.87)Co_(0.10)Mg_(0.03)O_2 cathode materials
18
作者 邓龙征 吴锋 +2 位作者 高旭光 刘震天 谢海明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期527-532,共6页
A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge ca... A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge capacities of 202.6 mA.h/g and 190.5 mA.h/g at 0.2C and 1C rate, respectively, in operating voltage range of 3.0-4.3 V (versus Li^+/Li). The capacity retentions are 96.1% and 93.4% at 0.2C and 1C, respectively, after 50 cycles. Moreover, the cycle performance of the sample was investigated in a 053048-type square Li ion battery. This type of battery can keep 81.7% of initial capacity after 500 charge-discharge cycles at 1C rate, which is close to that of commercial LiCoO2 battery. Therefore, the as-prepared material is capable of such high energy applications as portable product power. 展开更多
关键词 lithium-ion batteries cathode material co-precipitation method cobalt-magnesium co-substitution ELECTROCHEMICALPROPERTIES
在线阅读 下载PDF
Improving structure stability of single-crystalline Ni-rich cathode at high voltage by element gradient doping and interfacial modifcation
19
作者 Ruijuan Wang Yixu Zhang +8 位作者 Zhi Li Lei Wu Jiarui Chen Xiaolin Liu Hui Hu Hao Ding Shuang Cao Qiliang Wei Xianyou Wang 《Journal of Energy Chemistry》 2025年第2期630-640,I0013,共12页
Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissoluti... Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissolution,irreversible phase transitions,and reduced structural stability during prolonged cycling at high voltage,which will significantly hinder their practical application.Herein,a Li4TeO5surface coating along with bulk Te-gradient doping strategy is proposed and developed to solve these issues for single-crystalline Ni-rich LiNi_(0.90)Co_(0.05)Mn_(0.05)O_(2)cathode(LTeO-1.0).It has been found that the bulk Te^(6+)gradient doping can lead to the formation of robust Te-O bonds that effectively inhibit H_(2)-H3 phase transformations and reinforce the lattice framework,and the in-situ Li4TeO5coating layer can act as a protective layer that suppresses the parasitic reactions and grain fragmentation.Besides,the modified material exhibits a higher Young's modulus,which will be conducive to maintaining significant structural and electrochemical stability under high-voltage conditions,Especially,the LTeO-1.0 electrode shows the improved Li^(+)diffusion kinetics and thermodynamic stability as well as high capacity retention of 95.83%and 82.12%after 200 cycles at the cut-off voltage of 4.3 and 4,5 V.Therefore,the efficacious dualmodification strategy will definitely contribute to enhancing the structural and electrochemical stability of single-crystalline Ni-rich cathodes and developing their application in LIBs. 展开更多
关键词 Single-crystalline Ni-rich cathode High cut-off voltage material fragmentation Li_(4)TeO_(5)coating layer Te^(6+)doping
在线阅读 下载PDF
Cesium-doped manganese-based Prussian blue analogue as a high-efficiency cathode material for potassium-ion batteries
20
作者 Jie Wang Zeyu Yuan +6 位作者 Jiaying Liao An Li Yifan Xu Haijie Qi Yuehua Man Yanqi Lv Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期120-127,共8页
Prussian blue analogues (PBAs) are regarded as promising cathode materials for potassium-ion batteries(PIBs) owing to their low cost and high reversible capacity.Compared to other PBAs,potassium manganese hexacyanofer... Prussian blue analogues (PBAs) are regarded as promising cathode materials for potassium-ion batteries(PIBs) owing to their low cost and high reversible capacity.Compared to other PBAs,potassium manganese hexacyanoferrate (KMnHCF) stands out for its superior capacity and operating voltage.However,Jahn-Teller effect of Mn^(3+)and the structural collapse caused by potassium ion insertion/extraction still affect the structural stability and electrochemical performance of this material.Herein,a green and efficient synthesis method is adopted to substitute potassium ions in KMnHCF with an appropriate amount of cesium ions to form a column effect.Cesium-doped KMnHCF (Cs-KMnHCF) mitigates the irreversible structural damage caused by potassiation/depotassiation and the Jahn-Teller effect,thereby improving the cycling stability.In addition,it widens the lattice channels,reduces the diffusion barrier of potassium ions,and optimizes the diffusion kinetics.By rationally controlling the doping amount of Cs^(+),the obtained K_(1.71)Cs_(0.05)Mn[Fe(CN)_(6)]_(0.95·0.05)·0.88H_(2)O exhibits remarkable electrochemical performance,with an initial discharge capacity of 137.6 mA h g^(-1)at a current density of 20 mA g^(-1)and a capacity retention of 89.6%after 600 cycles at 200 mA g^(-1).More importantly,when assembled with a pitch-derived soft carbon anode,the full cell manifests excellent cycle stability and rate performance.This work is expected to provide a highly efficient cathode material for the practical application of PIBs. 展开更多
关键词 Prussian blue analogue cathode material Potassium-ion battery Ion exchange Column effect
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部