Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assig...Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assigned to n-π^(*)electronic transitions involving the two lone pairs on sulfur(TLPS).The as-prepared samples,denoted as CN-ThAx(where x indicates the amount of ThA added,mg),showed an additional absorption above 500 nm as compared to pristine g-C_(3)N_(4).Further,the thiophene group enhanced charge carrier separation to suppress e‒/h+pair recombination.The experimental results suggest that the thiophene group can obstruct the polymerization of melem to generate a large plane,thus exposing the lone electron pairs on the sulfur.The photocatalytic activity was evaluated in the decomposition of bisphenol A and H2 evolution.Compared with g-C_(3)N_(4),the optimized CN-ThA_(30) sample led to a 6.6-and 2-fold enhancement of the degradation and H2 generation rates,respectively.The CN-ThA_(30) sample allowed for synchronous H2 production and BPA decomposition.展开更多
文摘Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assigned to n-π^(*)electronic transitions involving the two lone pairs on sulfur(TLPS).The as-prepared samples,denoted as CN-ThAx(where x indicates the amount of ThA added,mg),showed an additional absorption above 500 nm as compared to pristine g-C_(3)N_(4).Further,the thiophene group enhanced charge carrier separation to suppress e‒/h+pair recombination.The experimental results suggest that the thiophene group can obstruct the polymerization of melem to generate a large plane,thus exposing the lone electron pairs on the sulfur.The photocatalytic activity was evaluated in the decomposition of bisphenol A and H2 evolution.Compared with g-C_(3)N_(4),the optimized CN-ThA_(30) sample led to a 6.6-and 2-fold enhancement of the degradation and H2 generation rates,respectively.The CN-ThA_(30) sample allowed for synchronous H2 production and BPA decomposition.