The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage mod...The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.展开更多
In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive ob...In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.展开更多
Based on the improved state observer and the pole placement technique, by adding a constant which extends the scope of use of the original system, a new design method of generalized projective synchronization is propo...Based on the improved state observer and the pole placement technique, by adding a constant which extends the scope of use of the original system, a new design method of generalized projective synchronization is proposed. With this method, by changing the projective synchronization scale factor, one can achieve not only complete synchronization, but also anti-synchronization, as well as arbitrary percentage of projective synchronization, so that the system may attain arbitrary synchronization in a relatively short period of time, which makes this study more meaningful. By numerical simulation, and choosing appropriate scale factor, the results of repeated experiments verify that this method is highly effective and satisfactory. Finally, based on this method and the relevant feedback concept, a novel secure communication project is designed. Numerical simulation verifies that this secure communication project is very valid, and moreover, the experimental result has been greatly improved in decryption time.展开更多
The projective reduced-order synchronization of two different chaotic systems with different orders is investigated based on the observer design in this paper.According to the observer theory,the reduced-order observe...The projective reduced-order synchronization of two different chaotic systems with different orders is investigated based on the observer design in this paper.According to the observer theory,the reduced-order observer is designed.The projective synchronization can be realized by choosing the transition matrix of the observer as a diagonal matrix.Further,the synchronization between hyperchaotic Chen system(fourth order)and Rssler system(third order)is taken as the example to demonstrate the effectiveness of the proposed observer.Numerical simulations confirm the effectiveness of the method.展开更多
This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asy...This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.展开更多
An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adop...An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.展开更多
To solve the chattering problem caused by discontinuous switching function in traditional sliding mode observer,a piecewise square root switching function with continuously varying characteristics is designed,and its ...To solve the chattering problem caused by discontinuous switching function in traditional sliding mode observer,a piecewise square root switching function with continuously varying characteristics is designed,and its stability is analyzed by using Lyapunov stability criterion.Secondly,according to the relationship among bus current,switching state and phase current,a single bus resistance sampling current reconstruction scheme without current sensors is adopted,which effectively reduces the cost of motor system.Finally,the feasibility and effectiveness of the proposed scheme are verified by simulation.展开更多
In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient...In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.展开更多
Presents the development of a robust and stable sliding observer based design for constructing two chaotic system synchronized system, and the fuzzy sliding observer (FMO) used for synchronization of chaos and to elim...Presents the development of a robust and stable sliding observer based design for constructing two chaotic system synchronized system, and the fuzzy sliding observer (FMO) used for synchronization of chaos and to eliminate chattering caused by switching term K sign ( 1-x 1).展开更多
A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy obs...A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy observer is proposed. A new lag synchronization criterion is derived using the Lyapunov stability theorem, in which control gains are obtained under the LMI condition. The proposed approach is applied to the well-known Chen's systems. A simulation example is presented to illustrate its effectiveness.展开更多
Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of th...Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51377041)
文摘The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.
文摘In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 20080431142)
文摘Based on the improved state observer and the pole placement technique, by adding a constant which extends the scope of use of the original system, a new design method of generalized projective synchronization is proposed. With this method, by changing the projective synchronization scale factor, one can achieve not only complete synchronization, but also anti-synchronization, as well as arbitrary percentage of projective synchronization, so that the system may attain arbitrary synchronization in a relatively short period of time, which makes this study more meaningful. By numerical simulation, and choosing appropriate scale factor, the results of repeated experiments verify that this method is highly effective and satisfactory. Finally, based on this method and the relevant feedback concept, a novel secure communication project is designed. Numerical simulation verifies that this secure communication project is very valid, and moreover, the experimental result has been greatly improved in decryption time.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50877007)the Fundamental Research Funds for the Central Universities(Grant No.DUT10LK12)
文摘The projective reduced-order synchronization of two different chaotic systems with different orders is investigated based on the observer design in this paper.According to the observer theory,the reduced-order observer is designed.The projective synchronization can be realized by choosing the transition matrix of the observer as a diagonal matrix.Further,the synchronization between hyperchaotic Chen system(fourth order)and Rssler system(third order)is taken as the example to demonstrate the effectiveness of the proposed observer.Numerical simulations confirm the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60274099)the National High Technology Research and Development Program of China (Grant No. 2004AA412030)
文摘This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.
文摘An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.
文摘To solve the chattering problem caused by discontinuous switching function in traditional sliding mode observer,a piecewise square root switching function with continuously varying characteristics is designed,and its stability is analyzed by using Lyapunov stability criterion.Secondly,according to the relationship among bus current,switching state and phase current,a single bus resistance sampling current reconstruction scheme without current sensors is adopted,which effectively reduces the cost of motor system.Finally,the feasibility and effectiveness of the proposed scheme are verified by simulation.
基金supported by King Abdullah University of Science and Technology (KAUST),KSA
文摘In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
文摘Presents the development of a robust and stable sliding observer based design for constructing two chaotic system synchronized system, and the fuzzy sliding observer (FMO) used for synchronization of chaos and to eliminate chattering caused by switching term K sign ( 1-x 1).
基金supported by the National Natural Science Foundation of China (No. 60872060)the Key Projects of Shanghai Municipal Commission of Education (No. 06ZZ84)
文摘A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy observer is proposed. A new lag synchronization criterion is derived using the Lyapunov stability theorem, in which control gains are obtained under the LMI condition. The proposed approach is applied to the well-known Chen's systems. A simulation example is presented to illustrate its effectiveness.
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. Y104414) and the Science and Technology Plan of Zhejiang Province (No. 2005C21084), China
文摘Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.