Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect fo...Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect for the upflow in the furnace are researched. Numerical simulations of this process are also made with standard ?turbulence model. The results show that air flow fullness in furnace is better in the case of the reburning zone with 8 nozzles compared to 4 nozzles and also coverage effect of the reburning flow for the updraft gas in the furnace is better. In the condition each nozzle airflow velocity is constant, the effect of reburning flow on coverage of up-secondary air is best when the incident angle for four corners is 14.17?, while Center of the furnace wall is 84.57. And while the best incident angle is invariable, the effect of reburning flow on coverage of up-secondary air is best when the speed of reburning gas in the corners of furnace is 51 m/s, the same to the center of the furnace wall’s.展开更多
A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressu...A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.展开更多
Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses ...Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.展开更多
High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibrati...High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibration problem is a tough and indispensable part of the wind tunnel security design.In this paper,taking a kind of two-stage ejector as the study object,multiple numerical simulation methods are adopted in order to carry out research on the analysis technique of the flow-induced vibration characteristics of ejector structure.Firstly,the structural dynamics characteristic is analyzed by using the ejector structural dynamics numerical model,which is built on the basis of finite element method.Secondly,the complex flow phenomenon is explored applying numerical fluid-dynamics model of the inner flow field of the ejector,which is constructed on the basis of finite volume method.Finally,based on the two numerical models above,the vibration response of the ejector structure induced by the high-speed airflow is computed via the fluid-solid coupling technique.The comparison of the simulation results with the actual vibration test indicates that these numerical simulation methods can accurately figure out the rule of flow-induced vibration of ejectors.展开更多
A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe th...A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.展开更多
The flow field in the ejector-diffuser system and its optimal operation condition are hardly complicated due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated ...The flow field in the ejector-diffuser system and its optimal operation condition are hardly complicated due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated inside the ejector- diffuser system. This paper aims at the improvement in ejector-diffuser system by focusing attention on entrainment ratio and pressure recovery. Several mixing guide vanes were installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A Computational Fluid Dynamics (CFD) method based on Fluent has been applied to simulate the supersonic flows and shock waves inside the ejector. A finite volume scheme and density-based solver with coupled scheme were applied in the computational process. Standard k-ω turbulent model, implicit formulations were used considering the accuracy and stability. Previous experimental results showed that more flow vortexes were generated and more vertical flow was introduced into the stream under a mixing guide vane influence. Besides these effects on the secondary stream, the mixing guide vane effects on the shock system of the primary stream were also investigated in this paper. Optimal analysis results of the mixing guide vane effects were also carried out in detail in terms of the positions, lengths and numbers to achieve the best operation condition. The comparison of ejector performance with and without the mixing guide vane was obtained. The ejector-diffuser system performance is discussed in terms of the entrainment ratio, pressure recovery as well as total pressure loss.展开更多
The so-called organic Rankine cycle(ORC)is an effective technology allowing heat recovery from lower temperature sources.In the present study,to improve its thermal efficiency,a preheated ejector using exhaust steam c...The so-called organic Rankine cycle(ORC)is an effective technology allowing heat recovery from lower temperature sources.In the present study,to improve its thermal efficiency,a preheated ejector using exhaust steam coming from the expander is integrated in the cycle(EPORC).Considering net power output,pump power,and thermal efficiency,the proposed system is compared with the basic ORC.The influence of the ejector ratio(ER)of the preheated ejector on the system performances is also investigated.Results show that the net power output of the EPORC is higher than that of the basic ORC due to the decreasing pump power.Under given working conditions,the average thermal efficiency of EPORC is 29%higher than that of ORC.The ER has a great impact on the performance of EPORC by adjusting the working fluid fed to the pump,leading to significant variations of the pump work Moreover,the ER has a remarkable effect on the working fluid temperature lift(TL)at the evaporator inlet,thus reducing the evaporator heat load.According to the results,the thermal efficiency of EPORC increases by 30%,when the ER increases from 0.05 to 0.4.展开更多
A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by...A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.展开更多
An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehen...An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.展开更多
Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major re...Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.展开更多
Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated...Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated performances the bench had been project, allowing to change speed regulation characteristics of a main stream and to regulate metering characteristics of an auxiliary fluid flow. For affirming of estimated performances of a heat exchanger of an ejector the imitative bench and with a view of accident prevention had been project, cooled air and the prepare water actuation mediums. The bench had been positioned in an insulated cooled room. For putting off gauging the multifunctional measuring complex of TESTO 400, was taken the temperature a surrounding medium, and a water rate does regulate by us. The high speed photo cameras were applied to bracing of formation of drips. Strain-gauge balances apply to determination of mass of water on the shield. The air flow was shape, and moving in an ejector heat exchanger by means of the axial multiple-speed fan. The purpose of projection of a heat interchanger of an ejector is maintaining of airspeeds by means of the ventilator in the mixing chamber 10 to 80 meters per second. The temperature of given air was a stationary value, equal to -20℃. Temperature of injection water was varying from 4 to 20℃.展开更多
Electrohydrodynamic(EHD)jet printing represents a novel micro/nano-scale additive manufacturing process that utilises a high-voltage induced electric field between the nozzle and the substrate to print micro/nanoscale...Electrohydrodynamic(EHD)jet printing represents a novel micro/nano-scale additive manufacturing process that utilises a high-voltage induced electric field between the nozzle and the substrate to print micro/nanoscale structures.EHD printing is particularly advantageous for the fabrication on flexible or non-flat substrates and of large aspect ratio micro/nanostructures and composite multi-material structures.Despite this,EHD printing has yet to be fully industrialised due to its low throughput,which is primarily caused by the limitations of serial additive printing technology.The parallel multi-nozzle array-based process has become the most promising option for EHD printing to achieve large-scale printing by increasing the number of nozzles to realise multichannel parallel printing.This paper reviews the recent development of multi-nozzle EHD printing technology,analyses jet motion with multi-nozzle,explains the origins of the electric field crosstalk effect under multi-nozzle and discusses several widely used methods for overcoming it.This work also summarises the impact of different process parameters on multi-nozzle EHD printing and describes the current manufacturing process using multi-nozzle as well as the method by which they can be realised independently.In addition,it presents an additional significant utilisation of multi-nozzle printing aside from enhancing single-nozzle production efficiency,which is the production of composite phase change materials through multi-nozzle.Finally,the future direction of multi-nozzle EHD printing development is discussed and envisioned.展开更多
文摘Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect for the upflow in the furnace are researched. Numerical simulations of this process are also made with standard ?turbulence model. The results show that air flow fullness in furnace is better in the case of the reburning zone with 8 nozzles compared to 4 nozzles and also coverage effect of the reburning flow for the updraft gas in the furnace is better. In the condition each nozzle airflow velocity is constant, the effect of reburning flow on coverage of up-secondary air is best when the incident angle for four corners is 14.17?, while Center of the furnace wall is 84.57. And while the best incident angle is invariable, the effect of reburning flow on coverage of up-secondary air is best when the speed of reburning gas in the corners of furnace is 51 m/s, the same to the center of the furnace wall’s.
基金supported by the Foundation of Liaoning Provincial Key Laboratory of Energy Storage and Utilization(Grant Nos.CNWK202304 and CNNK202315)the Introduction of TalentResearch Start-Up Funding Projects ofYingkou Institute of Technology(Grant No.YJRC202107).
文摘A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.
文摘Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.
基金supported in part by the National Natural Science Foundation of China (Nos.51806234, 51805530)
文摘High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibration problem is a tough and indispensable part of the wind tunnel security design.In this paper,taking a kind of two-stage ejector as the study object,multiple numerical simulation methods are adopted in order to carry out research on the analysis technique of the flow-induced vibration characteristics of ejector structure.Firstly,the structural dynamics characteristic is analyzed by using the ejector structural dynamics numerical model,which is built on the basis of finite element method.Secondly,the complex flow phenomenon is explored applying numerical fluid-dynamics model of the inner flow field of the ejector,which is constructed on the basis of finite volume method.Finally,based on the two numerical models above,the vibration response of the ejector structure induced by the high-speed airflow is computed via the fluid-solid coupling technique.The comparison of the simulation results with the actual vibration test indicates that these numerical simulation methods can accurately figure out the rule of flow-induced vibration of ejectors.
基金Project supported by the Doctoral Fund of Ministry of Education of China (No. 20070335133)the Educational Commission of Zhejiang Province (No. 20070057), China
文摘A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.
文摘The flow field in the ejector-diffuser system and its optimal operation condition are hardly complicated due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated inside the ejector- diffuser system. This paper aims at the improvement in ejector-diffuser system by focusing attention on entrainment ratio and pressure recovery. Several mixing guide vanes were installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A Computational Fluid Dynamics (CFD) method based on Fluent has been applied to simulate the supersonic flows and shock waves inside the ejector. A finite volume scheme and density-based solver with coupled scheme were applied in the computational process. Standard k-ω turbulent model, implicit formulations were used considering the accuracy and stability. Previous experimental results showed that more flow vortexes were generated and more vertical flow was introduced into the stream under a mixing guide vane influence. Besides these effects on the secondary stream, the mixing guide vane effects on the shock system of the primary stream were also investigated in this paper. Optimal analysis results of the mixing guide vane effects were also carried out in detail in terms of the positions, lengths and numbers to achieve the best operation condition. The comparison of ejector performance with and without the mixing guide vane was obtained. The ejector-diffuser system performance is discussed in terms of the entrainment ratio, pressure recovery as well as total pressure loss.
基金This work was supported by the National Risk Assessment Laboratory of Agroproducts Processing Quality and Safety,Ministry of Agriculture and Rural Affairs(S2020KFKT-06).
文摘The so-called organic Rankine cycle(ORC)is an effective technology allowing heat recovery from lower temperature sources.In the present study,to improve its thermal efficiency,a preheated ejector using exhaust steam coming from the expander is integrated in the cycle(EPORC).Considering net power output,pump power,and thermal efficiency,the proposed system is compared with the basic ORC.The influence of the ejector ratio(ER)of the preheated ejector on the system performances is also investigated.Results show that the net power output of the EPORC is higher than that of the basic ORC due to the decreasing pump power.Under given working conditions,the average thermal efficiency of EPORC is 29%higher than that of ORC.The ER has a great impact on the performance of EPORC by adjusting the working fluid fed to the pump,leading to significant variations of the pump work Moreover,the ER has a remarkable effect on the working fluid temperature lift(TL)at the evaporator inlet,thus reducing the evaporator heat load.According to the results,the thermal efficiency of EPORC increases by 30%,when the ER increases from 0.05 to 0.4.
文摘A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.
基金Project(NR2013K04) supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,ChinaProject(20130909) supported by the Higher School Science and Technology Development Fund of Tianjin,China
文摘An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.
文摘Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.
文摘Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated performances the bench had been project, allowing to change speed regulation characteristics of a main stream and to regulate metering characteristics of an auxiliary fluid flow. For affirming of estimated performances of a heat exchanger of an ejector the imitative bench and with a view of accident prevention had been project, cooled air and the prepare water actuation mediums. The bench had been positioned in an insulated cooled room. For putting off gauging the multifunctional measuring complex of TESTO 400, was taken the temperature a surrounding medium, and a water rate does regulate by us. The high speed photo cameras were applied to bracing of formation of drips. Strain-gauge balances apply to determination of mass of water on the shield. The air flow was shape, and moving in an ejector heat exchanger by means of the axial multiple-speed fan. The purpose of projection of a heat interchanger of an ejector is maintaining of airspeeds by means of the ventilator in the mixing chamber 10 to 80 meters per second. The temperature of given air was a stationary value, equal to -20℃. Temperature of injection water was varying from 4 to 20℃.
基金National Natural Science Foundation of China(Grant Nos.52275345,52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(2021KJ044)Natural Science Foundation of Shandong Province,China(Granted No.ZR2020ZD04)。
文摘Electrohydrodynamic(EHD)jet printing represents a novel micro/nano-scale additive manufacturing process that utilises a high-voltage induced electric field between the nozzle and the substrate to print micro/nanoscale structures.EHD printing is particularly advantageous for the fabrication on flexible or non-flat substrates and of large aspect ratio micro/nanostructures and composite multi-material structures.Despite this,EHD printing has yet to be fully industrialised due to its low throughput,which is primarily caused by the limitations of serial additive printing technology.The parallel multi-nozzle array-based process has become the most promising option for EHD printing to achieve large-scale printing by increasing the number of nozzles to realise multichannel parallel printing.This paper reviews the recent development of multi-nozzle EHD printing technology,analyses jet motion with multi-nozzle,explains the origins of the electric field crosstalk effect under multi-nozzle and discusses several widely used methods for overcoming it.This work also summarises the impact of different process parameters on multi-nozzle EHD printing and describes the current manufacturing process using multi-nozzle as well as the method by which they can be realised independently.In addition,it presents an additional significant utilisation of multi-nozzle printing aside from enhancing single-nozzle production efficiency,which is the production of composite phase change materials through multi-nozzle.Finally,the future direction of multi-nozzle EHD printing development is discussed and envisioned.