A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequenc...A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.展开更多
Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained ...Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.展开更多
针对传统单个逆变器驱动的无线电能传输(wireless power transfer,WPT)系统输出功率有限的问题,提出了一种多逆变器模块并联驱动的大功率WPT系统,并对多逆变器模块并联的拓扑结构和各模块间的环流进行了分析。为了解决逆变器并联时产生...针对传统单个逆变器驱动的无线电能传输(wireless power transfer,WPT)系统输出功率有限的问题,提出了一种多逆变器模块并联驱动的大功率WPT系统,并对多逆变器模块并联的拓扑结构和各模块间的环流进行了分析。为了解决逆变器并联时产生的环流问题,提出了基于主从策略的相位同步控制方法,通过从逆变器输出电压和发送端电流相位差同步于主逆变器输出电压和发送端电流相位差实现逆变器模块间的相位差补偿。研制了三个逆变器模块并联驱动的WPT系统样机,实验结果表明,在500 V直流输入时,负载端获得功率约为20 kW,传输效率达94%,且各逆变器输出电压相位实现同步,证明了相位同步控制方法的有效性。展开更多
文摘A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.
文摘Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.
文摘针对传统单个逆变器驱动的无线电能传输(wireless power transfer,WPT)系统输出功率有限的问题,提出了一种多逆变器模块并联驱动的大功率WPT系统,并对多逆变器模块并联的拓扑结构和各模块间的环流进行了分析。为了解决逆变器并联时产生的环流问题,提出了基于主从策略的相位同步控制方法,通过从逆变器输出电压和发送端电流相位差同步于主逆变器输出电压和发送端电流相位差实现逆变器模块间的相位差补偿。研制了三个逆变器模块并联驱动的WPT系统样机,实验结果表明,在500 V直流输入时,负载端获得功率约为20 kW,传输效率达94%,且各逆变器输出电压相位实现同步,证明了相位同步控制方法的有效性。