期刊文献+
共找到998篇文章
< 1 2 50 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
Remaining Useful Life Prediction of Rail Based on Improved Pulse Separable Convolution Enhanced Transformer Encoder
2
作者 Zhongmei Wang Min Li +2 位作者 Jing He Jianhua Liu Lin Jia 《Journal of Transportation Technologies》 2024年第2期137-160,共24页
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di... In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set. 展开更多
关键词 Equipment Health Prognostics Remaining Useful Life Prediction Pulse separable convolution Attention Mechanism Transformer Encoder
在线阅读 下载PDF
Multi-Layer Feature Extraction with Deformable Convolution for Fabric Defect Detection
3
作者 Jielin Jiang Chao Cui +1 位作者 Xiaolong Xu Yan Cui 《Intelligent Automation & Soft Computing》 2024年第4期725-744,共20页
In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.... In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time. 展开更多
关键词 Fabric defect detection multi-layer features deformable convolution
在线阅读 下载PDF
Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
4
作者 Zenglun Guan Murad S.Alfarzaeai +2 位作者 Eryi Hu Taqiaden Alshmeri Wang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第4期279-306,共28页
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new... In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value. 展开更多
关键词 COAL coal gangue convolutional neural network CNN object classification volume estimation separation system
在线阅读 下载PDF
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
5
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate separable spatiotemporal convolution Dimension separable attention MULTI-SCALE Neural network
在线阅读 下载PDF
Validation Research on the Application of Depthwise Separable Convolutional Al Facial Expression Recognition in Non-pharmacological Treatment of BPSD
6
作者 Xiangyu Liu 《Journal of Clinical and Nursing Research》 2021年第4期31-37,共7页
One of the most obvious clinical reasons of dementia or The Behavioral and Psychological Symptoms of Dementia(BPSD)are the lack of emotional expression,the increased frequency of negative emotions,and the impermanence... One of the most obvious clinical reasons of dementia or The Behavioral and Psychological Symptoms of Dementia(BPSD)are the lack of emotional expression,the increased frequency of negative emotions,and the impermanence of emotions.Observing the reduction of BPSD in dementia through emotions can be considered effective and widely used in the field of non-pharmacological therapy.At present,this article will verify whether the image recognition artificial intelligence(AI)system can correctly reflect the emotional performance of the elderly with dementia through a questionnaire survey of three professional elderly nursing staff.The ANOVA(sig.=0.50)is used to determine that the judgment given by the nursing staff has no obvious deviation,and then Kendall's test(0.722**)and spearman's test(0.863**)are used to verify the judgment severity of the emotion recognition system and the nursing staff unanimously.This implies the usability of the tool.Additionally,it can be expected to be further applied in the research related to BPSD elderly emotion detection. 展开更多
关键词 Depth-wise separable convolution EMOTION BPSD DEMENTIA Nursing
在线阅读 下载PDF
Recommendation System Based on Perceptron and Graph Convolution Network
7
作者 Zuozheng Lian Yongchao Yin Haizhen Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3939-3954,共16页
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio... The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms. 展开更多
关键词 Recommendation system graph convolution network attention mechanism multi-layer perceptron
在线阅读 下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
8
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network Depthwise Dilated separable convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
SepFE:Separable Fusion Enhanced Network for Retinal Vessel Segmentation 被引量:2
9
作者 Yun Wu Ge Jiao Jiahao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2465-2485,共21页
The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation... The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation approaches based on convolutional neural networks(CNNs)have achieved remarkable effectiveness.Here,we extend a retinal vessel segmentation model with low complexity and high performance based on U-Net,which is one of the most popular architectures.In view of the excellent work of depth-wise separable convolution,we introduce it to replace the standard convolutional layer.The complexity of the proposed model is reduced by decreasing the number of parameters and calculations required for themodel.To ensure performance while lowering redundant parameters,we integrate the pre-trained MobileNet V2 into the encoder.Then,a feature fusion residual module(FFRM)is designed to facilitate complementary strengths by enhancing the effective fusion between adjacent levels,which alleviates extraneous clutter introduced by direct fusion.Finally,we provide detailed comparisons between the proposed SepFE and U-Net in three retinal image mainstream datasets(DRIVE,STARE,and CHASEDB1).The results show that the number of SepFE parameters is only 3%of U-Net,the Flops are only 8%of U-Net,and better segmentation performance is obtained.The superiority of SepFE is further demonstrated through comparisons with other advanced methods. 展开更多
关键词 Retinal vessel segmentation U-Net depth-wise separable convolution feature fusion
在线阅读 下载PDF
A WEIGHTED GENERAL DISCRETE FOURIER TRANSFORM FOR THE FREQUENCY-DOMAIN BLIND SOURCE SEPARATION OF CONVOLUTIVE MIXTURES 被引量:1
10
作者 Wang Chao Fang Yong Feng Jiuchao 《Journal of Electronics(China)》 2008年第6期830-833,共4页
This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform... This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform (WGDFT) is derived to replace the traditional Discrete Fourier Transform (DFT). The mixing matrix on each frequency bin could be estimated more precisely from WGDFT coefficients than from DFT coefficients, which improves separation performance. Simulation results verify the validity of WGDFT for frequency domain blind source separation of convolutive mixtures. 展开更多
关键词 Blind Source separation of convolutive Mixtures (CMBSS) Frequency representation of overlap and save Weighted General Discrete Fourier Transform (WGDFT)
在线阅读 下载PDF
Maximum Likelihood Blind Separation of Convolutively Mixed Discrete Sources
11
作者 辜方林 张杭 朱德生 《China Communications》 SCIE CSCD 2013年第6期60-67,共8页
In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation proce... In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation procedure of the EM algorithm with a less computational load,the algorithm named Iterative Maximum Likelihood algorithm(IML) is proposed to calculate the likelihood and recover the source signals.An important feature of the ML approach is that it has robust performance in noise environments by treating the covariance matrix of the additive Gaussian noise as a parameter.Another striking feature of the ML approach is that it is possible to separate more sources than sensors by exploiting the finite alphabet property of the sources.Simulation results show that the proposed ML approach works well either in determined mixtures or underdetermined mixtures.Furthermore,the performance of the proposed ML algorithm is close to the performance with perfect knowledge of the channel filters. 展开更多
关键词 Blind Source separation convolutive mixture EM Finite Alphabet
在线阅读 下载PDF
AN NMF ALGORITHM FOR BLIND SEPARATION OF CONVOLUTIVE MIXED SOURCE SIGNALS WITH LEAST CORRELATION CONSTRAINS
12
作者 Zhang Ye Fang Yong 《Journal of Electronics(China)》 2009年第4期557-563,共7页
Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual stati... Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual statistically dependent signals. When the observations are nonnegative linear combinations of nonnegative sources, the correlation coefficients of the observations are larger than these of source signals. In this letter, a novel Nonnegative Matrix Factorization (NMF) algorithm with least correlated component constraints to blind separation of convolutive mixed sources is proposed. The algorithm relaxes the source independence assumption and has low-complexity algebraic com- putations. Simulation results on blind source separation including real face image data indicate that the sources can be successfully recovered with the algorithm. 展开更多
关键词 Nonnegative matrix factorization convolutive blind source separation Correlation constrain
在线阅读 下载PDF
A Framework of Lightweight Deep Cross-Connected Convolution Kernel Mapping Support Vector Machines
13
作者 Qi Wang Zhaoying Liu +3 位作者 Ting Zhang Shanshan Tu Yujian Li Muhammad Waqas 《Journal on Artificial Intelligence》 2022年第1期37-48,共12页
Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classifi... Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classification.However,the depth kernel mapping support vector machine does not take into account the connection of different dimensional spaces and increases the model parameters.To further improve the recognition capability of deep kernel mapping support vector machines while reducing the number of model parameters,this paper proposes a framework of Lightweight Deep Convolutional Cross-Connected Kernel Mapping Support Vector Machines(LC-CKMSVM).The framework consists of a feature extraction module and a classification module.The feature extraction module first maps the data from low-dimensional to high-dimensional space by fusing the representations of different dimensional spaces through cross-connections;then,it uses depthwise separable convolution to replace part of the original convolution to reduce the number of parameters in the module;The classification module uses a soft margin support vector machine for classification.The results on 6 different visual datasets show that LC-CKMSVM obtains better classification accuracies on most cases than the other five models. 展开更多
关键词 convolutional neural network cross-connected lightweight framework depthwise separable convolution
在线阅读 下载PDF
基于YOLOv5s的轻量化森林火灾探测算法
14
作者 刘惠临 方琼 +3 位作者 江宇 魏华章 王涛 张树川 《中国安全科学学报》 北大核心 2025年第1期75-83,共9页
为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间... 为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间;其次,设计分组混洗策略优化常规卷积,并在特征提取的C3模块中融入高效通道注意力(ECA)机制和深度可分离卷积,增强图像特征提取与融合能力的同时有效降低模型的参数量;然后,采用动态非单调聚焦机制优化Wise-交并比(WIOU)损失函数,减少低质量样本产生的有害梯度;最后,在构建的森林火灾数据集上将所提算法与其他算法做充分的试验对比。结果表明:所提算法在各类场景均展现出良好的泛化性,对火焰目标的检测精度达到86.1%,较标准YOLOv5s检测精度提升2.7%,检测速度提升11.4%,有效降低了火灾误报率,增强了模型的检测性能。 展开更多
关键词 YOLOv5s 轻量化 森林火灾探测 深度可分离卷积 注意力 Wise-交并比(WIOU)
在线阅读 下载PDF
基于GADF和CWT并行输入模型的滚动轴承智能诊断研究
15
作者 张小丽 和飞翔 +2 位作者 梁旺 李敏 王保建 《湖南大学学报(自然科学版)》 北大核心 2025年第2期98-108,共11页
滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual n... 滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual neural network,P2DDSResNet)模型,通过格拉姆角分场(Gramian angular difference field,GADF)和连续小波变换(continuous wavelet transform,CWT)将振动信号转变为二维时频图像,保留了完整的时频域信息.采用深度可分离卷积替代残差模块中的普通卷积,增强特征学习能力,从而使模型具有更强的特征提取能力,以解决在高噪声和变工况环境中故障诊断效果不佳的问题.采用滚动轴承故障模拟试验台获取的数据对其进行试验分析并与其他卷积神经网络方法对比,结果表明,优化后的算法模型具有良好的泛化性和准确率. 展开更多
关键词 故障诊断 深度可分离卷积 滚动轴承 残差神经网络 特征提取
在线阅读 下载PDF
基于生成对抗网络的航拍路面阴影去除
16
作者 韩建峰 金聪颖 +1 位作者 宋丽丽 赵悦辰 《电光与控制》 北大核心 2025年第2期86-92,共7页
采用无人机航拍采集路面图像,可有效提高路面健康状况检测的效率。然而,无人机航拍图像因航拍角度和日照变化的影响,产生的长阴影会掩盖路面破损信息,影响破损检测的准确性。针对这一问题,提出一种基于生成对抗网络(GAN)的航拍路面阴影... 采用无人机航拍采集路面图像,可有效提高路面健康状况检测的效率。然而,无人机航拍图像因航拍角度和日照变化的影响,产生的长阴影会掩盖路面破损信息,影响破损检测的准确性。针对这一问题,提出一种基于生成对抗网络(GAN)的航拍路面阴影去除算法,在生成对抗网络中引入多尺度特征提取模块,以增强图像信息特征提取能力;同时,在判别网络结构中采用深度可分离卷积,有效降低模型对非阴影区域的敏感性,提高判别网络的鉴别效果;此外,构建不同路面和光照条件下的航拍路面阴影数据集,提升模型泛化能力及鲁棒性。实验结果表明,所提算法获得的无阴影结果图像在多个无参考图像质量评估指标上均有所提升,能够提高路面破损检测识别的准确性和完整性。 展开更多
关键词 航拍路面 阴影去除 多尺度特征提取 深度可分离卷积
在线阅读 下载PDF
基于DDE-BIT的无人机高速公路护栏损坏检测
17
作者 王洋 郭杜杜 帅洪波 《现代电子技术》 北大核心 2025年第4期123-129,共7页
针对现有方法对无人机高速公路护栏损坏检测存在边缘信息提取效果差、识别精度低的问题,提出一种基于深度学习的变化检测模型DDE-BIT。首先,采用深度可分离卷积优化主干网络Resnet18,减少模型的参数数量,降低计算成本;然后,在主干网络... 针对现有方法对无人机高速公路护栏损坏检测存在边缘信息提取效果差、识别精度低的问题,提出一种基于深度学习的变化检测模型DDE-BIT。首先,采用深度可分离卷积优化主干网络Resnet18,减少模型的参数数量,降低计算成本;然后,在主干网络输出部分引入ECA注意力模块,在仅增加少量参数的情况下提高模型的跨通道信息捕捉能力;最后,通过跳跃连接方式对BIT双时空图像转换器的输出特征进行堆叠,提高模型的上下文信息理解能力。以采集的无人机高速公路护栏损坏图像为实验数据,实验结果表明:DDE-BIT模型的交并比和F1分数分别为90.99%、95.28%,相较于原始模型分别提高了2.71%、1.51%,能够有效地提取护栏损坏的边缘信息。 展开更多
关键词 护栏损坏检测 无人机 ECA注意力机制 深度可分离卷积 图像处理 信息提取
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
18
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
基于深度可分离卷积混合网络模型的地浸采铀注液量预测研究
19
作者 刘志锋 唐俊贤 +1 位作者 林芝宁 周义朋 《铀矿冶》 2025年第1期9-17,共9页
地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内... 地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内存消耗大。本研究提出深度可分离卷积混合模型,通过动态序列分割模块降低固定分割带来的语义破坏,通过深度可分离卷积混合模块降低模型运行时间并捕获局部和全局特征。结果表明,深度可分离卷积混合网络模型的均方误差(Mean Square Error,MSE)与平均绝对误差(Mean Absolute Error,MAE)相较于时间序列分块自注意力模型(Patch Time Series Transformer,PatchTST)分别降低了1.04%和4.13%,提出的动态序列分割模块的MSE与MAE相较于原有模型分别降低了7.32%和5.03%;在性能对比分析上,深度可分离卷积混合模型的训练速度相较于趋势季节分解线性模型(Decomposition Linear,DLinear)提高了59.91%。建立的模型能够准确预测采区生产运行中硫酸注液量的变化趋势,改善了现有预测模型针对地浸铀矿数据集存在的运行时间长、运行内存大、数据拟合差的问题,可为地浸铀矿生产决策提供理论和实践参考。 展开更多
关键词 地浸采铀 注液量预测 深度可分离卷积 预测模型
在线阅读 下载PDF
基于EE-YOLOv8s的多场景火灾迹象检测算法
20
作者 崔克彬 耿佳昌 《图学学报》 北大核心 2025年第1期13-27,共15页
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征... 针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。 展开更多
关键词 烟火目标检测 EfficientNetEasy主干网络 大型可分离核注意力机制 可变形卷积校准模块 小目标检测
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部