期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
Development of Machine Learning Methods for Accurate Prediction of Plant Disease Resistance 被引量:1
1
作者 Qi Liu Shi-min Zuo +10 位作者 Shasha Peng Hao Zhang Ye Peng Wei Li Yehui Xiong Runmao Lin Zhiming Feng Huihui Li Jun Yang Guo-Liang Wang Houxiang Kang 《Engineering》 SCIE EI CAS CSCD 2024年第9期100-110,共11页
The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease... The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding. 展开更多
关键词 Predicting plant disease resistance Genomic selection Machine learning Genome-wide association study
在线阅读 下载PDF
Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System 被引量:1
2
作者 Shadman Nashif Md. Rakib Raihan +1 位作者 Md. Rasedul Islam Mohammad Hasan Imam 《World Journal of Engineering and Technology》 2018年第4期854-873,共20页
Cardiovascular diseases are the most common cause of death worldwide over the last few decades in the developed as well as underdeveloped and developing countries. Early detection of cardiac diseases and continuous su... Cardiovascular diseases are the most common cause of death worldwide over the last few decades in the developed as well as underdeveloped and developing countries. Early detection of cardiac diseases and continuous supervision of clinicians can reduce the mortality rate. However, accurate detection of heart diseases in all cases and consultation of a patient for 24 hours by a doctor is not available since it requires more sapience, time and expertise. In this?study, a tentative design of a cloud-based heart disease prediction system had been proposed to detect impending heart disease using Machine learning techniques. For the accurate detection of the heart disease, an efficient machine learning technique should be used which had been derived from a distinctive analysis among several machine learning algorithms in a Java Based Open Access Data Mining Platform, WEKA. The proposed algorithm was validated using two widely used open-access database, where 10-fold cross-validation is applied in order to analyze the performance of heart disease detection. An accuracy level of 97.53% accuracy was found from the SVM algorithm along with sensitivity and specificity of 97.50% and 94.94%respectively. Moreover, to monitor the heart disease patient round-the-clock by his/her caretaker/doctor, a real-time patient monitoring system was developed and presented using Arduino, capable of sensing some real-time parameters such as body temperature, blood pressure, humidity, heartbeat. The developed system can transmit the recorded data to a central server which are updated every 10 seconds. As a result, the doctors can visualize the patient’s real-time sensor data by using the application and start live video streaming if instant medication is required. Another important feature of the proposed system was that as soon as any real-time parameter of the patient exceeds the threshold, the prescribed doctor is notified at once through GSM technology. 展开更多
关键词 Data MINING Machine Learning IoT (Internet of Things) PATIENT monitoring System HEART DISEASE DETECTION and prediction
在线阅读 下载PDF
Monitoring Thosea sinensis Walker in Tea Plantations Based on UAV Multi- Spectral Image
3
作者 Lin Yuan Qimeng Yu +3 位作者 Yao Zhang Xiaochang Wang Ouguan Xu Wenjing Li 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期747-761,共15页
Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research co... Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research community.Such methods also enable us to calculate the precise application of pesticides and prevent the subsequent spread of the pests.In this work,based on the unmanned aerial vehicle(UAV)platform,five band images of multispectral red-edge camera were obtained and used for monitoring the TSW in tea plantations.By combining the minimum redundancy maximum relevance(mRMR)with the selected spectral features,a comprehensive spectral selection strategy was proposed.Then,based on the selected spectral features,three classic machine learning algorithms,including random forest(RF),support vector machine(SVM),and k-nearest neighbors(KNN)were used to construct the pest monitoring model and were evaluated and compared.The results showed that the strategy proposed in this work obtained ideal monitoring accuracy by only using the combination of a few optimized features(2 or 4).In order to differentiate the healthy and TSW-damaged areas(2-class model),the monitoring accuracies of all the three models were computed,which were above 96%.The RF model used the least number of features,including only SAVI and Bandred.In order to further discriminate the pest incidence levels(3-class model),the monitoring accuracies of all the three models were computed,which were above 80%,among which the RF algorithm based on SAVI,Band_(red),VARI__(green),and Band_(red_edge) features achieve the highest accuracy(OAA of 87%,and Kappa of 0.79).Considering the computational cost and model accuracy,this work recommends the RF model based on a few optimal feature combinations to monitor and distinguish the severity of TSW in tea plantations.According to the UAV remote sensing mapping results,the TSW infestation exhibited an aggregated distribution pattern.The spatial information of occurrence and severity can offer effective guidance for precise control of the pest.In addition,the relevant methods provide a reference for monitoring other leaf-eating pests,effectively improving the management level of plant protection in tea plantations,and guaranting the yield and quality of tea plantations. 展开更多
关键词 Unmanned aerial vehicle diseases and pests monitoring tea plant MULTISPECTRAL Thosea sinensis Walker
在线阅读 下载PDF
现代化技术在森林病虫害监测与预警中的研究进展
4
作者 蒋雪松 戎子凡 +3 位作者 黄林峰 陈青 贾志成 王金鹏 《中国农业科技导报(中英文)》 北大核心 2025年第1期1-16,共16页
森林对生态环境的保护和经济的发展起重要作用,然而病虫害的侵染严重制约了森林资源的可持续发展。近年来,遥感、机器视觉、生物传感器、物联网等现代化监测技术迅速发展,为森林大面积病虫害的精准监测与快速预警奠定了坚实基础。因此,... 森林对生态环境的保护和经济的发展起重要作用,然而病虫害的侵染严重制约了森林资源的可持续发展。近年来,遥感、机器视觉、生物传感器、物联网等现代化监测技术迅速发展,为森林大面积病虫害的精准监测与快速预警奠定了坚实基础。因此,就现代化技术在森林病虫害监测和预警方面的应用进行综合评述,旨在为相关从业者提供技术参考及辅助决策依据。在遥感方面,介绍了基于光谱响应监测森林病虫害的机理,从近地、地块及区域3个尺度对森林病虫害遥感监测的研究现状进行总结和讨论;在机器视觉方面,对比传统图像处理方法与深度学习的优缺点,从迁移学习、轻量化模型等方面分析提高监测效率的可行性;在生物学方面,阐述了如何基于虫类的生物学特征以及植物的生物学变化实现对病虫害的监测。此外,对物联网、5G等网络技术与现代监测技术相结合的方法进行探讨,以期达到对森林病虫害进行远程监控与预警的目的。最后,针对现阶段森林病虫害监测不及时、演变不清晰、预警不准确、防治不精准等问题,提出今后亟需以物联网技术为核心,建立地面、空中立体化病虫害监测网络,构建完备的病虫害数据库,建立多终端在线实时信息显示的监测和预警系统。 展开更多
关键词 森林病虫害 遥感 机器视觉 生物学 物联网 监测预警
在线阅读 下载PDF
植物病原菌孢子捕捉和监测—助力植物病害管理
5
作者 王奥霖 范洁茹 +7 位作者 徐飞 陈莉 曹世勤 王万军 孙振宇 刘伟 胡小平 周益林 《植物保护》 北大核心 2025年第1期1-19,共19页
农业生态系统中所有类型的植物均会受到病原菌的长期威胁。许多高风险植物病原菌能够通过空气传播,甚至可随高空气流完成跨区域的远距离扩散。因此,为了控制气传病害管理中的杀菌剂投入,需密切监测空气中的病原菌孢子。病菌孢子捕捉技... 农业生态系统中所有类型的植物均会受到病原菌的长期威胁。许多高风险植物病原菌能够通过空气传播,甚至可随高空气流完成跨区域的远距离扩散。因此,为了控制气传病害管理中的杀菌剂投入,需密切监测空气中的病原菌孢子。病菌孢子捕捉技术作为监测空气中病菌孢子量的有效手段,可为种植者或相关政府部门提供病害风险的早期预警信息,辅助病害管理决策。近年来,分子检测技术的发展拓宽了其在植物病害管理中的应用范围。本文主要从植物病害流行病学、病原体生物学、空气动力学等方面,对病菌孢子捕捉技术,以及利用该技术获得的数据改善病害管理策略的相关研究进展进行综述,并讨论了应用病菌孢子捕捉和监测技术需要考虑的主要因素。随着物联网、大数据及人工智能等技术的不断发展,该技术的发展面临着新的机遇和挑战。整合新技术和改善数据获取、分析、解释、共享效率,实现病菌孢子捕捉的监测预警技术网格化、信息化与智能化的深度融合成为新的发展需求。 展开更多
关键词 植物病害流行学 空气生物学 病菌孢子捕捉 植物病害监测预警 病害管理决策系统
在线阅读 下载PDF
基于云边端协同的水电厂智能监盘系统
6
作者 洪佳礼 周彦 +1 位作者 郭连恒 李明明 《水电与新能源》 2025年第1期54-56,共3页
水电厂监盘系统对于保障电厂设备安全稳定运行具有重要作用。针对传统监盘系统监测数据量大,报警界限固定等问题,建立了云中心、边缘侧以及设备端三者协同的水电厂智能监盘系统架构,开发数据分类挖掘、趋势预测报警、智能报表生成以及... 水电厂监盘系统对于保障电厂设备安全稳定运行具有重要作用。针对传统监盘系统监测数据量大,报警界限固定等问题,建立了云中心、边缘侧以及设备端三者协同的水电厂智能监盘系统架构,开发数据分类挖掘、趋势预测报警、智能报表生成以及云端远程监控等功能,实现对电厂设备状态的全面感知、智能分析以及自动决策,助力水电厂数字化智能化转型。 展开更多
关键词 水电厂 设备状态 云边端协同 趋势预测 监盘系统
在线阅读 下载PDF
Image-Based Automatic Diagnostic System for Tomato Plants Using Deep Learning 被引量:1
7
作者 Shaheen Khatoon Md Maruf Hasan +2 位作者 Amna Asif Majed Alshmari Yun-Kiam Yap 《Computers, Materials & Continua》 SCIE EI 2021年第4期595-612,共18页
Tomato production is affected by various threats,including pests,pathogens,and nutritional deciencies during its growth process.If control is not timely,these threats affect the plant-growth,fruit-yield,or even loss o... Tomato production is affected by various threats,including pests,pathogens,and nutritional deciencies during its growth process.If control is not timely,these threats affect the plant-growth,fruit-yield,or even loss of the entire crop,which is a key danger to farmers’livelihood and food security.Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost.Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss.Recent developments in Articial Intelligence(AI)and computer vision allow researchers to develop image-based automatic diagnostic tools to quickly and accurately detect diseases.In this work,we proposed an AI-based approach to detect diseases in tomato plants.Our goal is to develop an end-to-end system to diagnose essential crop problems in real-time,ensuring high accuracy.This paper employs various deep learning models to recognize and predict different diseases caused by pathogens,pests,and nutritional deciencies.Various Convolutional Neural Networks(CNNs)are trained on a large dataset of leaves and fruits images of tomato plants.We compared the performance of ShallowNet(a shallow network trained from scratch)and the state-of-theart deep learning network(models are ne-tuned via transfer learning).In our experiments,DenseNet consistently achieved high performance with an accuracy score of 95.31%on the test dataset.The results verify that deep learning models with the least number of parameters,reasonable complexity,and appropriate depth achieve the best performance.All experiments are implemented in Python,utilizing the Keras deep learning library backend with TensorFlow. 展开更多
关键词 Tomato plant disease classication and prediction deep learning convolutional neural network RestNet VGGNet DenseNet
在线阅读 下载PDF
An adaptive Mealy machine model for monitoring crop status
8
作者 Berk Ustundag 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期252-265,共14页
Variation in phenological stage is the major nonlinearity in monitoring, modeling and various estimations of agricultural systems. Indices are used as a common means of evaluating agricultural monitoring data from rem... Variation in phenological stage is the major nonlinearity in monitoring, modeling and various estimations of agricultural systems. Indices are used as a common means of evaluating agricultural monitoring data from remote sensing and terrestrial observation systems, and many of these indices have linear characteristics. The analysis of and relationships between indices are dependent on the type of plant, but they are also highly variable with respect to its phenologicat stage. For this reason, variations in the phenologica! stage affect the performance of spatiotemporal crop status monitoring. We hereby propose an adaptive event-triggered model for monitoring crop status based on remote sensing data and terrestrial observations. In the proposed model, the estimation of phenological stage is a part of predicting crop status, and spatially distributed remote sensing parameters and temporal terrestrial monitoring data are used together as inputs in a state space system model. The temporal data are segmented with respect to the phenological stage-oriented timing of the spatial data, so instead of a generalized discrete state space model, we used logical states combined with analog inputs and adaptive trigger functions, as in the case of a Mealy machine model. This provides the necessary nonlinearity for the state transi- tions. The results showed that observation parameters have considerably greater significance in crop status monitoring with respect to conventional agricultural data fusion techniques. 展开更多
关键词 plant phenology monitoring yield prediction finite automata Mealy machine remote sensing
在线阅读 下载PDF
Towards Sustainable Agricultural Systems:A Lightweight Deep Learning Model for Plant Disease Detection
9
作者 Sana Parez Naqqash Dilshad +1 位作者 Turki M.Alanazi Jong Weon Lee 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期515-536,共22页
A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure ... A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information.Therefore,the agricultural management system is searching for an automatic early disease detection technique.To this end,an efficient and lightweight Deep Learning(DL)-based framework(E-GreenNet)is proposed to overcome these problems and precisely classify the various diseases.In the end-to-end architecture,a MobileNetV3Smallmodel is utilized as a backbone that generates refined,discriminative,and prominent features.Moreover,the proposed model is trained over the PlantVillage(PV),Data Repository of Leaf Images(DRLI),and a new Plant Composite(PC)dataset individually,and later on test samples,its actual performance is evaluated.After extensive experimental analysis,the proposed model obtained 1.00%,0.96%and 0.99%accuracies on all three included datasets.Moreover,the proposed method achieves better inference speed when compared with other State-Of-The-Art(SOTA)approaches.In addition,a comparative analysis is conducted where the proposed strategy shows tremendous discriminative scores as compared to the various pretrained models and other Machine Learning(ML)and DL methods. 展开更多
关键词 Computer vision deep learning embedded vision agriculture monitoring classification plant disease detection Internet of Things(IoT)
在线阅读 下载PDF
Spray Prediction Model for Aonla Rust Disease Using Machine Learning
10
作者 Hemant Kumar Singh Bhanu Pratap +4 位作者 S.K.Maheshwari Ayushi Gupta Anuradha Chug Amit Prakash Singh Dinesh Singh 《Journal of Agricultural Science and Technology(B)》 2023年第1期1-12,共12页
Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are prese... Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are present in adequate amounts as required by the plant.On the other hand,if the factors are inadequate,they may also support the growth of a disease in the plants.The current study focuses on the Rust disease in Aonla fruits and leaves by utilizing a real time dataset of weather parameters.Fifteen different models are tested for spray prediction on conducive days.Two resampling techniques,random over sampling(ROS)and synthetic minority oversampling technique(SMOTE)have been used to balance the dataset and five different classifiers:support vector machine(SVM),logistic regression(LR),k-nearest neighbor(kNN),decision tree(DT)and random forest(RF)have been used to classify a particular day based on weather conditions as conducive or non-conducive.The classifiers are then evaluated based on four performance metrics:accuracy,precision,recall and F1-score.The results indicate that for imbalanced dataset,kNN is appropriate with high precision and recall values.Considering both balanced and imbalanced dataset models,the proposed model SMOTE-RF performs best among all models with 94.6%accuracy and can be used in a real time application for spray prediction.Hence,timely fungicide spray prediction without over spraying will help in better productivity and will prevent the yield loss due to rust disease in Aonla crop. 展开更多
关键词 Aonla Internet of Things machine learning plant disease RUST spray prediction.
在线阅读 下载PDF
凉水塔变形监测与基坑敏感因子灰色关联分析
11
作者 栾亨宣 许浩 +4 位作者 郭传超 田志超 左世晓 胡军伟 栾元重 《工程勘察》 2024年第9期50-54,88,共6页
基坑开挖容易引起临近电厂凉水塔变形,是深基坑工程面临的主要难题之一。本文实地监测深基坑开挖对附近电厂凉水塔的影响,统计了基坑开挖过程中凉水塔地表垂直和水平位移、结构变形等参数。依托某实际工程,研究基坑开挖引起凉水塔变形... 基坑开挖容易引起临近电厂凉水塔变形,是深基坑工程面临的主要难题之一。本文实地监测深基坑开挖对附近电厂凉水塔的影响,统计了基坑开挖过程中凉水塔地表垂直和水平位移、结构变形等参数。依托某实际工程,研究基坑开挖引起凉水塔变形预测方法,建立凉水塔地表垂直位移灰色预测模型。采用灰色关联分析确定基坑各敏感因素对凉水塔变形的影响程度,由大到小依次为:基坑与建筑物间距、土体弹性模量、围护结构厚度、土体内摩擦角、土体粘聚力。通过开展凉水塔变形监测与相关研究工作,相关研究理论能够为类似深基坑工程提供参考。 展开更多
关键词 基坑 电厂凉水塔 监测 预测 灰色关联分析
在线阅读 下载PDF
棉花病虫害遥感监测研究进展 被引量:1
12
作者 胡连槟 兰玉彬 +6 位作者 于海琳 张帅领 田秉权 王小丽 王泽生 赵静 李永军 《山东农业科学》 北大核心 2024年第4期164-171,共8页
病虫害严重威胁棉花的产量与质量,阻碍棉花产业的发展,传统人工田间调查病虫害发生状况的方法难以满足大范围病虫害监测预报的需求。遥感监测技术可以无损获取棉花表型信息,能快速、大面积解译病虫害发生程度及空间分布信息,已发展成为... 病虫害严重威胁棉花的产量与质量,阻碍棉花产业的发展,传统人工田间调查病虫害发生状况的方法难以满足大范围病虫害监测预报的需求。遥感监测技术可以无损获取棉花表型信息,能快速、大面积解译病虫害发生程度及空间分布信息,已发展成为棉花病虫害监测的重要途径。本文阐述了棉花病虫害近地、低空、卫星遥感监测的研究进展,总结了现有发展面临的问题,并对未来的研究方向和应用前景进行了展望,以期为棉花病虫害遥感监测研究提供指导和建议。 展开更多
关键词 遥感监测 棉花病虫害 光谱响应 识别预测 研究进展
在线阅读 下载PDF
24h pH-阻抗监测对胃食管反流病患者治疗反应性的预测价值 被引量:1
13
作者 董培雯 王琼 +3 位作者 孙恺蒂 刘丽 龙彦婵 林琳 《徐州医科大学学报》 CAS 2024年第1期18-24,共7页
目的探讨24 h pH-阻抗监测对胃食管反流病(gastroesophageal reflux disease,GERD)患者治疗反应性的预测价值。方法选取2020年12月—2022年11月成都市第三人民医院接受治疗的286例具有典型反流症状的GERD患者作为研究对象,所有患者均接... 目的探讨24 h pH-阻抗监测对胃食管反流病(gastroesophageal reflux disease,GERD)患者治疗反应性的预测价值。方法选取2020年12月—2022年11月成都市第三人民医院接受治疗的286例具有典型反流症状的GERD患者作为研究对象,所有患者均接受质子泵抑制剂(proton pump inhibitors,PPI)治疗,2个月后根据治疗效果,将患者分为有效组和无效组。对比2组患者的日常生活习惯、高分辨率测压结果、24 h pH-阻抗监测结果、症状及量表评分。采用多因素logistic回归分析筛选治疗反应影响因素,构建预测模型,绘制ROC曲线分析其预测价值。结果治疗2个月后,有效组纳入184例,无效组纳入102例。有效组治疗前食管下括约肌(low esophageal sphincter,LES)长度以及LES静息压均低于无效组(P<0.10),远端潜伏期(distal latency,DL)及远端收缩积分(distal contractile integral,DCI)均高于无效组(P<0.10),有效组患者治疗前的酸暴露时间(acid exposure time,AET)≥6%、总反流发作次数、DeMeester评分均低于无效组(P<0.10);有效组反流后吞咽诱发的蠕动波(post-reflux swallow-induced peristaltic wave,PSPW)指数≥61%比例、平均夜间基线阻抗(mean nocturnal baseline impedance,MNBI)值≥2292Ω比例高于无效组(P<0.10)。多因素logistic回归分析显示,LES静息压(OR=0.738)、DL(OR=3.643)、DCI(OR=1.124)及24 h pH-阻抗监测综合预测(OR=1.940)水平均可影响GERD治疗反应性(P<0.10)。ROC曲线分析显示,24 h pH-阻抗监测的综合预测水平(AUC=0.969,特异度=90.2%,敏感度=91.3%)高于其他影响因素。结论24 h pH-阻抗监测的相关参数可高度预测典型的GERD患者对采用PPI后的治疗反应。 展开更多
关键词 胃食管反流病 质子泵抑制剂 24h pH-阻抗监测 预测价值 治疗效果
在线阅读 下载PDF
基于智慧物联网的社区老年健康监测服务设计研究 被引量:1
14
作者 刘霞 石元伍 +1 位作者 王文聪 韩敏 《包装工程》 CAS 北大核心 2024年第14期128-136,共9页
目的全球老龄化对医疗保健系统造成了冲击,给老年群体的医护服务供需平衡带来了重大挑战,为提高就医便捷性、促进健康问题早期发现,以及预防性医护服务的定制化、系统化,探讨了一种创新的智慧社区老年医护服务模式。方法基于物联网(IoT... 目的全球老龄化对医疗保健系统造成了冲击,给老年群体的医护服务供需平衡带来了重大挑战,为提高就医便捷性、促进健康问题早期发现,以及预防性医护服务的定制化、系统化,探讨了一种创新的智慧社区老年医护服务模式。方法基于物联网(IoT)技术和人工智能(AI)算法,构建了以传感器多路采集为数据来源的物联网健康监测框架,开发了融合传感器、电子医疗记录和病例样本数据为特征数据的机器学习疾病预测模型,并在此基础上设计了远程医护服务平台应用程序,构成了智慧社区老年健康监测服务模式。结论系统以物联网-人工智能-交互终端为核心,利用老年人生理数据预测其慢性病风险进而实现提前预警,便于提供及时的干预措施,为医患双方提供沟通媒介及辅助诊断工具。系统有望推动养老医护服务的发展,提高服务的可及性与有效性。 展开更多
关键词 远程医疗 物联网技术 健康监测 机器学习 疾病预测 养老服务 居家养老
在线阅读 下载PDF
计算机视觉技术在规模化猪场应用的研究进展
15
作者 邓永涛 陈希文 《中国兽医杂志》 CAS 北大核心 2024年第2期101-106,共6页
作为人工智能的一个主要分支,计算机视觉技术在许多领域取得了很大的成就,其在规模化猪场中的应用将为猪场带来产业性的变革。计算机视觉技术可以大幅度减少规模化猪场中人员工作量,同时使猪场对生猪的相关判断更加准确。本文简述了规... 作为人工智能的一个主要分支,计算机视觉技术在许多领域取得了很大的成就,其在规模化猪场中的应用将为猪场带来产业性的变革。计算机视觉技术可以大幅度减少规模化猪场中人员工作量,同时使猪场对生猪的相关判断更加准确。本文简述了规模化猪场的现状和计算机视觉技术,重点综述了计算机视觉技术在规模化猪场中对猪只的行为监测、疾病预测、情感状态分析、猪只判别、生产管理、生物安全和防疫以及企业的落地探索等方面的研究进展,以期为促进我国规模化猪场的现代化和智能化发展提供参考。 展开更多
关键词 计算机视觉技术 规模化猪场 行为监测 疾病预测 猪只判别
在线阅读 下载PDF
动态监测脑利尿钠肽、D-二聚体、血清白蛋白与球蛋白比值对慢性阻塞性肺疾病急性加重期患者预后的预测意义
16
作者 王丹平 孟凡亮 +2 位作者 朱洪斌 范小玉 颜刚林 《中国医药导报》 CAS 2024年第22期120-125,共6页
目的探究血清脑利尿钠肽(BNP)、D-二聚体(D-D)及白蛋白与球蛋白比值(AGR)在预测慢性阻塞性肺疾病急性加重期(AECOPD)患者预后中的价值。方法选取2021年1月至2023年4月于安徽医科大学附属巢湖医院住院治疗的162例AECOPD患者为研究对象,... 目的探究血清脑利尿钠肽(BNP)、D-二聚体(D-D)及白蛋白与球蛋白比值(AGR)在预测慢性阻塞性肺疾病急性加重期(AECOPD)患者预后中的价值。方法选取2021年1月至2023年4月于安徽医科大学附属巢湖医院住院治疗的162例AECOPD患者为研究对象,根据其治疗1年内的预后情况将其分为预后不良组(64例)和预后良好组(98例),记录并分析两组一般临床资料,采用多因素logistic回归分析AECOPD患者预后不良的影响因素。结果预后不良组吸烟史占比高于预后良好组(P<0.05);两组入院第7天血清BNP、D-D水平低于第1天,AGR水平高于第1天(P<0.05);入院第1天,预后不良组BNP、D-D水平高于预后良好组,AGR水平低于预后良好组(P<0.05);多因素logistic回归分析结果显示,有吸烟史(OR=4.125,95%CI:1.632~10.428,P=0.003)、入院第1天血清AGR低(OR=0.008,95%CI:0.001~0.071,P<0.001)、BNP高(OR=1.097,95%CI:1.045~1.151,P<0.001)、D-D高(OR=46.669,95%CI:5.374~405.269,P<0.001)是预后不良的主要危险因素;Pearson相关性分析结果显示,入院第1天血清BNP(r=0.376,P<0.001)、D-D水平(r=0.351,P<0.001)与AECOPD患者预后不良呈正相关;入院第1天AGR(r=-0.296,P<0.001)与AECOPD患者预后不良呈负相关;ROC曲线显示,入院第1天血清BNP、D-D、AGR指标联合预测AECOPD患者预后不良的AUC高于各项指标单一预测(P<0.05)。结论动态监测血清BNP、D-D和AGR水平对于AECOPD患者预后的预测具有重要意义,入院初期的血清指标具有早期预测价值。 展开更多
关键词 动态监测 脑利尿钠肽 D-二聚体 血清白蛋白与球蛋白比值 慢性阻塞性肺疾病急性加重期 预测价值
在线阅读 下载PDF
光电容积脉搏波技术在可穿戴医疗设备中的应用及其未来发展 被引量:2
17
作者 徐成喜 李志伟 姚佳烽 《现代仪器与医疗》 CAS 2024年第3期58-63,76,共7页
光电容积脉搏波(Photoplethysmography,PPG)技术,作为一种非侵入式的生理参数监测方法,在心率、血氧饱和度以及其他生理指标的实时监测中已广泛应用。随着可穿戴技术的快速发展,PPG技术在医疗设备领域呈现出广阔的应用前景。本文详细讨... 光电容积脉搏波(Photoplethysmography,PPG)技术,作为一种非侵入式的生理参数监测方法,在心率、血氧饱和度以及其他生理指标的实时监测中已广泛应用。随着可穿戴技术的快速发展,PPG技术在医疗设备领域呈现出广阔的应用前景。本文详细讨论了PPG技术的基本原理、在可穿戴医疗设备中的应用现状及面临的挑战,同时探索了技术的未来发展方向。 展开更多
关键词 光电容积脉搏波 可穿戴 医疗设备 心律不齐监测 睡眠质量分析 心血管疾病预测
在线阅读 下载PDF
Grow-light smart monitoring system leveraging lightweight deep learning for plant disease classification
18
作者 William Macdonald Yuksel Asli Sari Majid Pahlevani 《Artificial Intelligence in Agriculture》 2024年第2期44-56,共13页
This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,t... This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks,residual connections,and dense residual connections applied without pre-training to the PlantVillage dataset.The novel contributions of this work include the proposal of a smart monitor-ing framework outline;responsible for detection and classification of ailments via the devised lightweight net-works as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system.Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy,precision,recall,and F1-scores of 96.75%,97.62%,97.59%,and 97.58%respectively,while consisting of only 228,479 model parameters.These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset,of which the proposed down-scaled lightweight models were capable of performing equally to,if not better than many large-scale counterparts with drastically less com-putational requirements. 展开更多
关键词 plant disease classification Smart monitoring Deep learning Residual connections INCEPTION Dense residual connections
原文传递
北方茶园数字化研究与实践 被引量:2
19
作者 王梓清 王武闯 +3 位作者 田国强 王林政 毕国宇 王林军 《中国茶叶》 2024年第4期58-65,共8页
在北方茶园中应用数字化技术,能够针对制约北方茶产业发展的诸多不利因素提供技术和管理方案,推动北方茶叶产业高质量发展。文章阐述了北方茶区发展数字化茶园的必要性和可行性,介绍了北方数字化茶园的技术研究与应用现状,包括茶园气象... 在北方茶园中应用数字化技术,能够针对制约北方茶产业发展的诸多不利因素提供技术和管理方案,推动北方茶叶产业高质量发展。文章阐述了北方茶区发展数字化茶园的必要性和可行性,介绍了北方数字化茶园的技术研究与应用现状,包括茶园气象灾害预测、病虫害智能监测预警、茶园可视化实时监控系统,以及数字茶叶等方面,并提出了北方数字茶园今后的发展趋势。 展开更多
关键词 数字化 气象灾害预测 病虫害智能监测预警 实时监控系统
在线阅读 下载PDF
谵妄预测模型的风险分级预防干预对慢性阻塞性肺疾病患者睡眠的影响
20
作者 杨国梅 黄彩滨 《世界睡眠医学杂志》 2024年第11期2622-2624,共3页
目的:分析慢性阻塞性肺疾病急性加重期(AECOPD)患者开展谵妄预测模型(PRE-DELIRIC)的风险分级预防干预的价值。方法:择取2022年10月至2023年10月厦门大学附属第一医院杏林分院收治的AECOPD患者88例作为研究对象,按照随机数字表法随机分... 目的:分析慢性阻塞性肺疾病急性加重期(AECOPD)患者开展谵妄预测模型(PRE-DELIRIC)的风险分级预防干预的价值。方法:择取2022年10月至2023年10月厦门大学附属第一医院杏林分院收治的AECOPD患者88例作为研究对象,按照随机数字表法随机分为对照组和观察组,每组44例。对照组给予常规护理,观察组给予PRE-DELIRIC框架的风险分级预防干预。评价2组多导睡眠监测、主观睡眠质量评分、谵妄情况。结果:相较对照组,观察组干预后总睡眠时间、睡眠效率均提高(P<0.05);观察组干预后理查兹-坎贝尔睡眠量表(RCSQ)各维度得分均提高(P<0.05);观察组谵妄发生率、谵妄持续时间均降低(P<0.05)。结论:AECOPD患者开展PRE-DELIRIC框架下的风险分级预防干预对睡眠质量有显著改善,且能够减少谵妄发生。 展开更多
关键词 慢性阻塞性肺疾病 急性加重期 谵妄预测模型 风险分级预防护理 多导睡眠监测参数 睡眠质量 睡眠障碍 主观睡眠质量评分
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部