The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease...The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding.展开更多
Cardiovascular diseases are the most common cause of death worldwide over the last few decades in the developed as well as underdeveloped and developing countries. Early detection of cardiac diseases and continuous su...Cardiovascular diseases are the most common cause of death worldwide over the last few decades in the developed as well as underdeveloped and developing countries. Early detection of cardiac diseases and continuous supervision of clinicians can reduce the mortality rate. However, accurate detection of heart diseases in all cases and consultation of a patient for 24 hours by a doctor is not available since it requires more sapience, time and expertise. In this?study, a tentative design of a cloud-based heart disease prediction system had been proposed to detect impending heart disease using Machine learning techniques. For the accurate detection of the heart disease, an efficient machine learning technique should be used which had been derived from a distinctive analysis among several machine learning algorithms in a Java Based Open Access Data Mining Platform, WEKA. The proposed algorithm was validated using two widely used open-access database, where 10-fold cross-validation is applied in order to analyze the performance of heart disease detection. An accuracy level of 97.53% accuracy was found from the SVM algorithm along with sensitivity and specificity of 97.50% and 94.94%respectively. Moreover, to monitor the heart disease patient round-the-clock by his/her caretaker/doctor, a real-time patient monitoring system was developed and presented using Arduino, capable of sensing some real-time parameters such as body temperature, blood pressure, humidity, heartbeat. The developed system can transmit the recorded data to a central server which are updated every 10 seconds. As a result, the doctors can visualize the patient’s real-time sensor data by using the application and start live video streaming if instant medication is required. Another important feature of the proposed system was that as soon as any real-time parameter of the patient exceeds the threshold, the prescribed doctor is notified at once through GSM technology.展开更多
Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research co...Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research community.Such methods also enable us to calculate the precise application of pesticides and prevent the subsequent spread of the pests.In this work,based on the unmanned aerial vehicle(UAV)platform,five band images of multispectral red-edge camera were obtained and used for monitoring the TSW in tea plantations.By combining the minimum redundancy maximum relevance(mRMR)with the selected spectral features,a comprehensive spectral selection strategy was proposed.Then,based on the selected spectral features,three classic machine learning algorithms,including random forest(RF),support vector machine(SVM),and k-nearest neighbors(KNN)were used to construct the pest monitoring model and were evaluated and compared.The results showed that the strategy proposed in this work obtained ideal monitoring accuracy by only using the combination of a few optimized features(2 or 4).In order to differentiate the healthy and TSW-damaged areas(2-class model),the monitoring accuracies of all the three models were computed,which were above 96%.The RF model used the least number of features,including only SAVI and Bandred.In order to further discriminate the pest incidence levels(3-class model),the monitoring accuracies of all the three models were computed,which were above 80%,among which the RF algorithm based on SAVI,Band_(red),VARI__(green),and Band_(red_edge) features achieve the highest accuracy(OAA of 87%,and Kappa of 0.79).Considering the computational cost and model accuracy,this work recommends the RF model based on a few optimal feature combinations to monitor and distinguish the severity of TSW in tea plantations.According to the UAV remote sensing mapping results,the TSW infestation exhibited an aggregated distribution pattern.The spatial information of occurrence and severity can offer effective guidance for precise control of the pest.In addition,the relevant methods provide a reference for monitoring other leaf-eating pests,effectively improving the management level of plant protection in tea plantations,and guaranting the yield and quality of tea plantations.展开更多
Tomato production is affected by various threats,including pests,pathogens,and nutritional deciencies during its growth process.If control is not timely,these threats affect the plant-growth,fruit-yield,or even loss o...Tomato production is affected by various threats,including pests,pathogens,and nutritional deciencies during its growth process.If control is not timely,these threats affect the plant-growth,fruit-yield,or even loss of the entire crop,which is a key danger to farmers’livelihood and food security.Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost.Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss.Recent developments in Articial Intelligence(AI)and computer vision allow researchers to develop image-based automatic diagnostic tools to quickly and accurately detect diseases.In this work,we proposed an AI-based approach to detect diseases in tomato plants.Our goal is to develop an end-to-end system to diagnose essential crop problems in real-time,ensuring high accuracy.This paper employs various deep learning models to recognize and predict different diseases caused by pathogens,pests,and nutritional deciencies.Various Convolutional Neural Networks(CNNs)are trained on a large dataset of leaves and fruits images of tomato plants.We compared the performance of ShallowNet(a shallow network trained from scratch)and the state-of-theart deep learning network(models are ne-tuned via transfer learning).In our experiments,DenseNet consistently achieved high performance with an accuracy score of 95.31%on the test dataset.The results verify that deep learning models with the least number of parameters,reasonable complexity,and appropriate depth achieve the best performance.All experiments are implemented in Python,utilizing the Keras deep learning library backend with TensorFlow.展开更多
Variation in phenological stage is the major nonlinearity in monitoring, modeling and various estimations of agricultural systems. Indices are used as a common means of evaluating agricultural monitoring data from rem...Variation in phenological stage is the major nonlinearity in monitoring, modeling and various estimations of agricultural systems. Indices are used as a common means of evaluating agricultural monitoring data from remote sensing and terrestrial observation systems, and many of these indices have linear characteristics. The analysis of and relationships between indices are dependent on the type of plant, but they are also highly variable with respect to its phenologicat stage. For this reason, variations in the phenologica! stage affect the performance of spatiotemporal crop status monitoring. We hereby propose an adaptive event-triggered model for monitoring crop status based on remote sensing data and terrestrial observations. In the proposed model, the estimation of phenological stage is a part of predicting crop status, and spatially distributed remote sensing parameters and temporal terrestrial monitoring data are used together as inputs in a state space system model. The temporal data are segmented with respect to the phenological stage-oriented timing of the spatial data, so instead of a generalized discrete state space model, we used logical states combined with analog inputs and adaptive trigger functions, as in the case of a Mealy machine model. This provides the necessary nonlinearity for the state transi- tions. The results showed that observation parameters have considerably greater significance in crop status monitoring with respect to conventional agricultural data fusion techniques.展开更多
A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure ...A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information.Therefore,the agricultural management system is searching for an automatic early disease detection technique.To this end,an efficient and lightweight Deep Learning(DL)-based framework(E-GreenNet)is proposed to overcome these problems and precisely classify the various diseases.In the end-to-end architecture,a MobileNetV3Smallmodel is utilized as a backbone that generates refined,discriminative,and prominent features.Moreover,the proposed model is trained over the PlantVillage(PV),Data Repository of Leaf Images(DRLI),and a new Plant Composite(PC)dataset individually,and later on test samples,its actual performance is evaluated.After extensive experimental analysis,the proposed model obtained 1.00%,0.96%and 0.99%accuracies on all three included datasets.Moreover,the proposed method achieves better inference speed when compared with other State-Of-The-Art(SOTA)approaches.In addition,a comparative analysis is conducted where the proposed strategy shows tremendous discriminative scores as compared to the various pretrained models and other Machine Learning(ML)and DL methods.展开更多
Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are prese...Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are present in adequate amounts as required by the plant.On the other hand,if the factors are inadequate,they may also support the growth of a disease in the plants.The current study focuses on the Rust disease in Aonla fruits and leaves by utilizing a real time dataset of weather parameters.Fifteen different models are tested for spray prediction on conducive days.Two resampling techniques,random over sampling(ROS)and synthetic minority oversampling technique(SMOTE)have been used to balance the dataset and five different classifiers:support vector machine(SVM),logistic regression(LR),k-nearest neighbor(kNN),decision tree(DT)and random forest(RF)have been used to classify a particular day based on weather conditions as conducive or non-conducive.The classifiers are then evaluated based on four performance metrics:accuracy,precision,recall and F1-score.The results indicate that for imbalanced dataset,kNN is appropriate with high precision and recall values.Considering both balanced and imbalanced dataset models,the proposed model SMOTE-RF performs best among all models with 94.6%accuracy and can be used in a real time application for spray prediction.Hence,timely fungicide spray prediction without over spraying will help in better productivity and will prevent the yield loss due to rust disease in Aonla crop.展开更多
This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,t...This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks,residual connections,and dense residual connections applied without pre-training to the PlantVillage dataset.The novel contributions of this work include the proposal of a smart monitor-ing framework outline;responsible for detection and classification of ailments via the devised lightweight net-works as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system.Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy,precision,recall,and F1-scores of 96.75%,97.62%,97.59%,and 97.58%respectively,while consisting of only 228,479 model parameters.These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset,of which the proposed down-scaled lightweight models were capable of performing equally to,if not better than many large-scale counterparts with drastically less com-putational requirements.展开更多
基金supported by the National Natural Science Foundation of China(32261143468)the National Key Research and Development(R&D)Program of China(2021YFC2600400)+1 种基金the Seed Industry Revitalization Project of Jiangsu Province(JBGS(2021)001)the Project of Zhongshan Biological Breeding Laboratory(BM2022008-02)。
文摘The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding.
文摘Cardiovascular diseases are the most common cause of death worldwide over the last few decades in the developed as well as underdeveloped and developing countries. Early detection of cardiac diseases and continuous supervision of clinicians can reduce the mortality rate. However, accurate detection of heart diseases in all cases and consultation of a patient for 24 hours by a doctor is not available since it requires more sapience, time and expertise. In this?study, a tentative design of a cloud-based heart disease prediction system had been proposed to detect impending heart disease using Machine learning techniques. For the accurate detection of the heart disease, an efficient machine learning technique should be used which had been derived from a distinctive analysis among several machine learning algorithms in a Java Based Open Access Data Mining Platform, WEKA. The proposed algorithm was validated using two widely used open-access database, where 10-fold cross-validation is applied in order to analyze the performance of heart disease detection. An accuracy level of 97.53% accuracy was found from the SVM algorithm along with sensitivity and specificity of 97.50% and 94.94%respectively. Moreover, to monitor the heart disease patient round-the-clock by his/her caretaker/doctor, a real-time patient monitoring system was developed and presented using Arduino, capable of sensing some real-time parameters such as body temperature, blood pressure, humidity, heartbeat. The developed system can transmit the recorded data to a central server which are updated every 10 seconds. As a result, the doctors can visualize the patient’s real-time sensor data by using the application and start live video streaming if instant medication is required. Another important feature of the proposed system was that as soon as any real-time parameter of the patient exceeds the threshold, the prescribed doctor is notified at once through GSM technology.
基金funded by the Zhejiang Agricultural Cooperative and Extensive Project of Key Technology(2020XTTGCY04-02,2020XTTGCY01-05)the Major Special Project for 2025 Scientific and Technological Innovation(Major Scientific and Technological Task Project in Ningbo City)(2021Z048).
文摘Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research community.Such methods also enable us to calculate the precise application of pesticides and prevent the subsequent spread of the pests.In this work,based on the unmanned aerial vehicle(UAV)platform,five band images of multispectral red-edge camera were obtained and used for monitoring the TSW in tea plantations.By combining the minimum redundancy maximum relevance(mRMR)with the selected spectral features,a comprehensive spectral selection strategy was proposed.Then,based on the selected spectral features,three classic machine learning algorithms,including random forest(RF),support vector machine(SVM),and k-nearest neighbors(KNN)were used to construct the pest monitoring model and were evaluated and compared.The results showed that the strategy proposed in this work obtained ideal monitoring accuracy by only using the combination of a few optimized features(2 or 4).In order to differentiate the healthy and TSW-damaged areas(2-class model),the monitoring accuracies of all the three models were computed,which were above 96%.The RF model used the least number of features,including only SAVI and Bandred.In order to further discriminate the pest incidence levels(3-class model),the monitoring accuracies of all the three models were computed,which were above 80%,among which the RF algorithm based on SAVI,Band_(red),VARI__(green),and Band_(red_edge) features achieve the highest accuracy(OAA of 87%,and Kappa of 0.79).Considering the computational cost and model accuracy,this work recommends the RF model based on a few optimal feature combinations to monitor and distinguish the severity of TSW in tea plantations.According to the UAV remote sensing mapping results,the TSW infestation exhibited an aggregated distribution pattern.The spatial information of occurrence and severity can offer effective guidance for precise control of the pest.In addition,the relevant methods provide a reference for monitoring other leaf-eating pests,effectively improving the management level of plant protection in tea plantations,and guaranting the yield and quality of tea plantations.
基金The authors extend their appreciation to the Deputyship for Research &Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the Project No.IFT20065。
文摘Tomato production is affected by various threats,including pests,pathogens,and nutritional deciencies during its growth process.If control is not timely,these threats affect the plant-growth,fruit-yield,or even loss of the entire crop,which is a key danger to farmers’livelihood and food security.Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost.Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss.Recent developments in Articial Intelligence(AI)and computer vision allow researchers to develop image-based automatic diagnostic tools to quickly and accurately detect diseases.In this work,we proposed an AI-based approach to detect diseases in tomato plants.Our goal is to develop an end-to-end system to diagnose essential crop problems in real-time,ensuring high accuracy.This paper employs various deep learning models to recognize and predict different diseases caused by pathogens,pests,and nutritional deciencies.Various Convolutional Neural Networks(CNNs)are trained on a large dataset of leaves and fruits images of tomato plants.We compared the performance of ShallowNet(a shallow network trained from scratch)and the state-of-theart deep learning network(models are ne-tuned via transfer learning).In our experiments,DenseNet consistently achieved high performance with an accuracy score of 95.31%on the test dataset.The results verify that deep learning models with the least number of parameters,reasonable complexity,and appropriate depth achieve the best performance.All experiments are implemented in Python,utilizing the Keras deep learning library backend with TensorFlow.
基金funded by Turkish Ministry of Development as a part of Agricultural Monitoring and Information Systems Project (2011A020100)the relevant joint project funded by Ministry of Food,Agriculture and Livestock,Turkey
文摘Variation in phenological stage is the major nonlinearity in monitoring, modeling and various estimations of agricultural systems. Indices are used as a common means of evaluating agricultural monitoring data from remote sensing and terrestrial observation systems, and many of these indices have linear characteristics. The analysis of and relationships between indices are dependent on the type of plant, but they are also highly variable with respect to its phenologicat stage. For this reason, variations in the phenologica! stage affect the performance of spatiotemporal crop status monitoring. We hereby propose an adaptive event-triggered model for monitoring crop status based on remote sensing data and terrestrial observations. In the proposed model, the estimation of phenological stage is a part of predicting crop status, and spatially distributed remote sensing parameters and temporal terrestrial monitoring data are used together as inputs in a state space system model. The temporal data are segmented with respect to the phenological stage-oriented timing of the spatial data, so instead of a generalized discrete state space model, we used logical states combined with analog inputs and adaptive trigger functions, as in the case of a Mealy machine model. This provides the necessary nonlinearity for the state transi- tions. The results showed that observation parameters have considerably greater significance in crop status monitoring with respect to conventional agricultural data fusion techniques.
基金This work was financially supported by MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2022-RS-2022-00156354)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)and also by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program(Project No.P0016038).
文摘A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information.Therefore,the agricultural management system is searching for an automatic early disease detection technique.To this end,an efficient and lightweight Deep Learning(DL)-based framework(E-GreenNet)is proposed to overcome these problems and precisely classify the various diseases.In the end-to-end architecture,a MobileNetV3Smallmodel is utilized as a backbone that generates refined,discriminative,and prominent features.Moreover,the proposed model is trained over the PlantVillage(PV),Data Repository of Leaf Images(DRLI),and a new Plant Composite(PC)dataset individually,and later on test samples,its actual performance is evaluated.After extensive experimental analysis,the proposed model obtained 1.00%,0.96%and 0.99%accuracies on all three included datasets.Moreover,the proposed method achieves better inference speed when compared with other State-Of-The-Art(SOTA)approaches.In addition,a comparative analysis is conducted where the proposed strategy shows tremendous discriminative scores as compared to the various pretrained models and other Machine Learning(ML)and DL methods.
文摘Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are present in adequate amounts as required by the plant.On the other hand,if the factors are inadequate,they may also support the growth of a disease in the plants.The current study focuses on the Rust disease in Aonla fruits and leaves by utilizing a real time dataset of weather parameters.Fifteen different models are tested for spray prediction on conducive days.Two resampling techniques,random over sampling(ROS)and synthetic minority oversampling technique(SMOTE)have been used to balance the dataset and five different classifiers:support vector machine(SVM),logistic regression(LR),k-nearest neighbor(kNN),decision tree(DT)and random forest(RF)have been used to classify a particular day based on weather conditions as conducive or non-conducive.The classifiers are then evaluated based on four performance metrics:accuracy,precision,recall and F1-score.The results indicate that for imbalanced dataset,kNN is appropriate with high precision and recall values.Considering both balanced and imbalanced dataset models,the proposed model SMOTE-RF performs best among all models with 94.6%accuracy and can be used in a real time application for spray prediction.Hence,timely fungicide spray prediction without over spraying will help in better productivity and will prevent the yield loss due to rust disease in Aonla crop.
文摘This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks,residual connections,and dense residual connections applied without pre-training to the PlantVillage dataset.The novel contributions of this work include the proposal of a smart monitor-ing framework outline;responsible for detection and classification of ailments via the devised lightweight net-works as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system.Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy,precision,recall,and F1-scores of 96.75%,97.62%,97.59%,and 97.58%respectively,while consisting of only 228,479 model parameters.These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset,of which the proposed down-scaled lightweight models were capable of performing equally to,if not better than many large-scale counterparts with drastically less com-putational requirements.