At present, microelectro mechanical systems (MEMS) sensors have gradually replaced traditional mechanical sensors and are applied to several fields. Many developed countries pay high attention to technological innovat...At present, microelectro mechanical systems (MEMS) sensors have gradually replaced traditional mechanical sensors and are applied to several fields. Many developed countries pay high attention to technological innovation of MEMS sensors, and have applied a large number of patents since 2000. In this study, the patents of MEMS sensor from 2000 to 2015 are researched, the patents data is collected from Derwent Innovation Index (DII), and the method of co-classification analysis is used to investigate the technology cluster evolution of MEMS sensors. Results show that the technology diffusion occurrs in each technical field and the technology relevance between different technical fields is changed over time. On the whole, the evolution process of MEMS sensor is the manufacture and material of sensor chip, the electronic components and measuring function, the computing and control technology, and applications to biochemical field and communication.展开更多
The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibratin...The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.展开更多
基金Supported by the Scientific Monitoring and Key Areas in-depth Investigation Analysis and Research(No.ZD2017-1)Science and Technology Major Specific Project Core Electronic Elements,High-General Chips and Basic Software(No.2015XM54)
文摘At present, microelectro mechanical systems (MEMS) sensors have gradually replaced traditional mechanical sensors and are applied to several fields. Many developed countries pay high attention to technological innovation of MEMS sensors, and have applied a large number of patents since 2000. In this study, the patents of MEMS sensor from 2000 to 2015 are researched, the patents data is collected from Derwent Innovation Index (DII), and the method of co-classification analysis is used to investigate the technology cluster evolution of MEMS sensors. Results show that the technology diffusion occurrs in each technical field and the technology relevance between different technical fields is changed over time. On the whole, the evolution process of MEMS sensor is the manufacture and material of sensor chip, the electronic components and measuring function, the computing and control technology, and applications to biochemical field and communication.
基金Supported by the National Natural Science Foundation of China (No.60172001).
文摘The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.