期刊文献+
共找到3,605篇文章
< 1 2 181 >
每页显示 20 50 100
Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers
1
作者 Fayi Yan He Lu Shijie Feng 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1493-1514,共22页
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified... Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter. 展开更多
关键词 Liquefied natural gas numerical simulation vapor-liquid two-phase flow heat transfer helically coiled tube-intube heat exchanger
在线阅读 下载PDF
Numerical simulation of heat transfer enhancement by strip-coil-baffles in tube-bundle for a tube-shell heat exchanger
2
作者 陈亚平 梅娜 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期81-85,共5页
A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vor... A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger. The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted. The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each comer of a square. The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software. The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed. The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle; meanwhile, higher flow resistance is also accompanied. It is believe that the strip-coil- baffled heat exchanger should have promising applications in many industry fields. 展开更多
关键词 heat transfer enhancement strip-coil-baffle tube-shell heat exchanger vortex flow numerical simulation
在线阅读 下载PDF
Experimental and Numerical Analysis of the Influence ofMicrochannel Size and Structure on Boiling Heat Transfer
3
作者 Ningbo Guo Xianming Gao +3 位作者 Duanling Li Jixing Zhang Penghui Yin Mengyi Hua 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3061-3082,共22页
Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ... Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel. 展开更多
关键词 microchannel boiling heat transfer BUBBLE numerical simulation visual experiment
在线阅读 下载PDF
Numerical Simulation of Heat Transfer and Deformation of Initial Shell in Soft Contact Continuous Casting Mold Under High Frequency Electromagnetic Field 被引量:8
4
作者 NA Xian-zhao XUE Min +1 位作者 ZHANG Xing-zhong GAN Yong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第6期14-21,共8页
Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromag... Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained. 展开更多
关键词 soft contact electromagnetic continuous casting MOLD heat transfer ~ initial solidification~ elastic-plasticdeformation finite element method numerical simulation
在线阅读 下载PDF
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:9
5
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 aluminum holding furnace COMBUSTION heat transfer fluid-solid coupled numerical simulation
在线阅读 下载PDF
Study on Numerical Simulation of Mold Filling and Heat Transfer in Die Casting Process 被引量:17
6
作者 Liangrong JIA, Shoumei XIONG and Baicheng LIU (Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期269-272,共4页
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow... A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice. 展开更多
关键词 Study on numerical simulation of Mold Filling and heat transfer in Die Casting Process MOLD simulation
在线阅读 下载PDF
Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer 被引量:3
7
作者 阳倦成 李凤臣 +2 位作者 蔡伟华 张红娜 宇波 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期404-420,共17页
Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can... Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows. 展开更多
关键词 viscoelastic-fluid-based nanofluid direct numerical simulation thermal dispersion model turbulent drag reduction heat transfer e
在线阅读 下载PDF
Numerical Simulation of Fluid Flow and Heat Transfer in Funnel Shaped Mold of Thin Slab Continuous Caster 被引量:2
8
作者 ZHU Miao-yong WANG Jun ZHANG Ying 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第6期14-19,共6页
Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation... Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation was carried out to study the fluid flow and heat transfer in the funnel shaped mold. The influence of nozzle design, casting speed and nozzle submersion depth on the flow and temperature fields in the mold was investigated, and guidance for selecting configurations of submerged nozzle was obtained. 展开更多
关键词 thin slab continuous casting fluid flow heat transfer numerical simulation
在线阅读 下载PDF
Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure
9
作者 Jiahao Xing Huaizhi Han +1 位作者 Ruitian Yu Wen Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期173-185,共13页
The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Rey... The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure. 展开更多
关键词 Sub-millimeter spiral tube Supercritical pressure numerical simulation heat transfer performance
在线阅读 下载PDF
Numerical Simulation of Heat Transfer of High-Temperature Slag Flow Inside the Blast Furnace Slag Trench
10
作者 Guangyan Fan Fuyong Su +1 位作者 Cunwang Li Bin Li 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期281-292,共12页
To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size... To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size of the slag trench and the physical properties of the high-temperature slag.The temperature field and flow field distribution of the high-temperature slag liquid inside the slag trench is obtained by numerical simulation under different working conditions,and the effects of operating conditions such as slag trench inclination,high-temperature slag inlet flow rate,and inlet temperature are investigated.The results show that the flow rate of high-temperature slag is related to the slope of the slag trench,the greater the slope of the slag trench,the higher the flow rate of high-temperature slag,in which the highest average speed can reach 2.23 m/s when the slope is 8%;changing the inlet flow rate,flowing through the slag trench,the high-temperature slag reaches the highest flow rate at the same position,the overall flow rate changes tend to rise first and then decrease,and the greater the inlet flow rate,the higher the temperature change of high-temperature slag.The higher the inlet flow rate,the higher the temperature change of high-temperature slag,the higher the temperature of high-temperature slag out of the slag trench;the higher the inlet temperature,the higher the overall flow rate of high-temperature slag,and the position of the highest flow rate is relatively backward. 展开更多
关键词 Blast furnace slag heat transfer and flow characteristics slag gully numerical simulation
在线阅读 下载PDF
Condensation Heat Transfer in Horizontal Non-Circular Microchannels
11
作者 Hicham El Mghari Mohamed Asbik Hasna Louahlia-Gualous 《Energy and Power Engineering》 2013年第9期577-586,共10页
This investigation contributes to a better understanding of condensation heat transfer in horizontal non-circular microchannels. For this purpose, the conservation equations of mass, momentum and energy have been nume... This investigation contributes to a better understanding of condensation heat transfer in horizontal non-circular microchannels. For this purpose, the conservation equations of mass, momentum and energy have been numerically solved in both phases (liquid and vapor), and all the more, so the film thickness analytical expression has been established. Numerical results relative to variations of the meniscus curvature radius, the condensate film thickness, the condensation length and heat transfer coefficients, are analyzed in terms of the influencing physical and geometrical quantities. The effect of the microchannel shapes on the average Nusselt number is highlighted by studying condensation of steam insquare, rectangular and equilateral triangular microchannels with the same hydraulic diameter of 250 μm. 展开更多
关键词 CONDENSATION microchannel numerical simulation Capillary Regime heat transfer
在线阅读 下载PDF
NUMERICAL SIMULATION OF HEAT,MASS AND MOMENTUM TRANSFERS IN METALLIC INGOTS AND PREDICTION OF MACROSEGREGATION
12
《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第7期37-41,共5页
A continuum model and numerical methods were established for description of heat,mass and momentum transfers as well as macrosegregation formations in metallic ingots.Numerical simulation of temperature,composition an... A continuum model and numerical methods were established for description of heat,mass and momentum transfers as well as macrosegregation formations in metallic ingots.Numerical simulation of temperature,composition and liquid flow fields during the solidification of an Al-4.5% Cu ingot were performed on an IBM personal computer.The model and numerical methods were verified through two experiments. 展开更多
关键词 numerical simulation heat transfer mass transfer momentum transfer Al-Cu alloy MACROSEGREGATION
在线阅读 下载PDF
Numerical Analysis on Temperature Distribution in a Single Cell of PEFC Operated at Higher Temperature by1D Heat Transfer Model and 3D Multi-Physics Simulation Model
13
作者 Akira Nishimura Kyohei Toyoda +1 位作者 Daiki Mishima Eric Hu 《Energy and Power Engineering》 CAS 2023年第5期205-227,共23页
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf... This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction. 展开更多
关键词 PEFC heat transfer Model Temperature Distribution numerical simulation High Temperature Operation
在线阅读 下载PDF
Numerical Simulation of Three-dimensional Heat and Mass Transfer in Spray Cooling of Converter Gas in a Venturi Scrubber 被引量:3
14
作者 LU Tao WANG Kuisheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期745-754,共10页
In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model... In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different Water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency. 展开更多
关键词 numerical simulation heat and mass transfer spray cooling converter gas venturi scrubber
在线阅读 下载PDF
A review on metal additive manufacturing:modeling and application of numerical simulation for heat and mass transfer and microstructure evolution 被引量:4
15
作者 Chuan-ming Liu Hua-bing Gao +3 位作者 Li-yu Li Jian-dong Wang Chun-huan Guo Feng-chun Jiang 《China Foundry》 SCIE CAS 2021年第4期317-334,共18页
Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phe... Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phenomena of heat and mass transfer and microstructure evolution.It is hard to directly observe the dynamic behavior and microstructure evolution of molten pool during additive manufacturing.Therefore,numerical simulation of additive manufacturing process is significant since it can efficiently and pertinently predict and analyze the physical phenomena in the process of metal additive manufacturing,and provide a reference for technological parameters selection.In this review,the research progress of numerical simulation of metal additive manufacturing is discussed.Various aspects of numerical simulation models are reviewed,including:(1)Introduction of basic control method and physical description of numerical simulation models;(2)Comparison of various heat and mass transfer models based on different physical assumptions(heat conduction model;heat flux coupling model;discrete powder particle heat flux coupling model);(3)Applications of various microstructure evolution models[phase field(PF),cellular automata(CA),and Monte Carlo(MC)].Finally,the development trend of numerical simulation of metal additive manufacturing,including the thermal-flow-solid coupling model and deep learning for numerical model,is analyzed. 展开更多
关键词 additive manufacturing numerical simulation heat and mass transfer microstructure evolution
在线阅读 下载PDF
Numerical Simulation and Optimization of a Mid-Temperature Heat Pipe Exchanger 被引量:7
16
作者 Jun Du Xin Wu +1 位作者 Ruonan Li Ranran Cheng 《Fluid Dynamics & Materials Processing》 EI 2019年第1期77-87,共11页
In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software.... In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software.The effects of different operating parameters and fin parameters on the heat transfer performance of heat exchangers are studied.The results show that the heat transfer performance of the mid-temperature gravity heat pipe exchanger is the best when the fin spacing is between 5 mm and 6 mm,the height of the heat pipe is between 12 mm and 13 mm,and the inlet velocity of the fluid is between 2.5 m/s to 3 m/s. 展开更多
关键词 Gravity heat pipe heat exchanger FLUENT numerical simulation heat transfer performance
在线阅读 下载PDF
3D Numerical Study on Compound Heat Transfer Enhancement of Converging-diverging Tubes Equipped with Twin Twisted Tapes 被引量:4
17
作者 洪宇翔 邓先和 张连山 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第3期589-601,共13页
The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes... The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu^d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate. 展开更多
关键词 heat transfer enhancement converging-diverging tube twisted tape numerical simulation
在线阅读 下载PDF
Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube 被引量:3
18
作者 Wen-Tao Li Xian-Ke Meng +1 位作者 Hao-Zhi Bian Ming Ding 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第8期55-68,共14页
In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans... In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%. 展开更多
关键词 Air–steam condensation numerical simulation heat transfer enhancement Fin tube
在线阅读 下载PDF
Simulation on flow, heat transfer and stress characteristics of large-diameter thick-walled gas cylinders in quenching process under different water spray volumes 被引量:2
19
作者 GAO Jing-na GAO Ying +2 位作者 XU Qin-ran WANG Ge LI Qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3188-3199,共12页
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders... Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m). 展开更多
关键词 large-diameter thick-walled gas cylinders QUENCHING water spray volume heat transfer STRESS numerical simulation
在线阅读 下载PDF
Numerical and theoretical investigations of heat transfer characteristics in helium-xenon cooled microreactor core 被引量:1
20
作者 Tian‑Shi Wang Xiang Chai +4 位作者 Chao‑Ran Guan Xin‑Yue Liu Jiao‑Long Deng Hui He Xiao‑Jing Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期1-19,共19页
Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,nume... Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment. 展开更多
关键词 Helium-xenon gas mixture Convective heat transfer Power distribution numerical simulation Nusselt number correlation
在线阅读 下载PDF
上一页 1 2 181 下一页 到第
使用帮助 返回顶部