期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Structure and functional heterogeneity of soil microbial communities in different farmland types on the Loess Plateau
1
作者 XU Chen SU Cuicui +3 位作者 CHEN Yiping MA Jifu WU Junhua JIANG Yao 《地球环境学报》 CSCD 2024年第4期653-664,共12页
Background,aim,and scope Soil microbes are important drivers of nutrient transformation and energy f low.Reclaiming forest land for agricultural use may have profound effects on soil properties and microbial communiti... Background,aim,and scope Soil microbes are important drivers of nutrient transformation and energy f low.Reclaiming forest land for agricultural use may have profound effects on soil properties and microbial communities.However,the response of soil microbial communities to soil reclamation in the dryland agroecosystem is less understood.Therefore,it is necessary to investigate the changes of soil microbial communities driven by land use conversion to promote nutrient cycling in reclaimed farmland.Materials and methods Based on the metagenomic technique,we evaluated the microbial composition and function of the newly created farmland(NF)after reclamation with two types of traditional farmland(slope farmland(SF),checkdam farmland(CF))on the Loess Plateau,and explored the response of nutrient cycling function to dominant genera and soil properties.Results The results showed that Proteobacteria,Actinobacteria,and Acidobacteria were prevalent in the three types of farmlands.Compared with SF and CF,NF increased the relative abundance of Actinobacteria and Nocardioides,as well as genes related to amino acid metabolism and carbohydrate metabolism.The relative abundance of functional genes related to carbon and nitrogen cycling in the NF was higher than that in the traditional farmland(SF and CF).The relative abundance of nutrient cycling functional genes was positively correlated with dominant genera in the three types of farmlands.Except for pH,soil physicochemical factors were negatively correlated with genes related to amino acid metabolism and carbon cycle.Discussion Previous studies have shown that the nutrient conditions of the soil may intensify the competition between the eutrophic and oligotrophic microbial populations.After long-term cultivation and fertilization,the soil properties of traditional farmland were significantly different from those of NF,leading to the differentiation of dominant microbial groups.Microbes usually have functional redundancy to cope with changing environments.Soil microbes in traditional farmland may contain more genes related to replication and repair,cell growth and death,and environmental adaptation in response to disturbances caused by agricultural practices.On the contrary,the NF was less disturbed by agricultural activities,and the soil properties were more similar to forest land,so the carbon and nitrogen cycle function genes were more abundant.The nutrient cycling function was affected by the abundance of microbial dominant groups and soil properties,which may be related to the availability of soil nutrients and agricultural disturbance in different farmlands.Aspects of soil microbial-driven nutrient cycling in agriculture could be regulated in sustainable method.Conclusions The change from forest land to farmland kept more carbon and nitrogen cycling function in the newly created farmland,while long-term agricultural activities have drastically changed the functional structure of traditional farmland,resulting in the nutrient cycling function more concentrated to meet the needs of crop growth.Recommendations and perspectives Hence,it is necessary to apply sustainable agricultural method to regulate microbial-driven nutrient cycling.The insights are meaningful for sustainable agricultural development and land management in arid areas. 展开更多
关键词 METAGENOMICS microbial function FARMLAND nutrient cycling Loess Plateau
在线阅读 下载PDF
Investigation of kinetics in bioaugmentation of crude oil via high-throughput sequencing: Enzymatic activities, bacterial community composition and functions 被引量:1
2
作者 Yong-Rui Pi Mu-Tai Bao 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1905-1914,共10页
The enzymes and the characteristics of the community of the petroleum-degrading bacteria play a crucial role in the crude oil biodegradation. The prediction of kinetics of the key groups of hydrocarbons in crude oil w... The enzymes and the characteristics of the community of the petroleum-degrading bacteria play a crucial role in the crude oil biodegradation. The prediction of kinetics of the key groups of hydrocarbons in crude oil was important to evaluate the bioremediation speed and constant. Most of the n-alkanes(C9-C29) were degraded in 25 days, and the average degradation rates of C_(18)~C_(27) higher than 100 μg g^(-1) d^(-1).The hopanes, such as H_(30), had a biodegradation rate more than 10 μg g^(-1) d^(-1). The related enzymes activities changed along with the crude oil biodegradation, especially dehydrogenase. The 16 S rRNA gene amplicon sequencing revealed that Proteobacteria, Firmcutes, Bacteroidetes, Actinobacteria, Acidobacteria were the main petroleum hydrocarbon degraders during the crude oil biodegradation, and the top two highest relative abundance of the genera were Alcaligenes and Acinetobacter. Acinetobacter presented positive correlation to biodegradation of n-alkanes and PAHs. Based on COG analysis, the largest group involved in the general function was amino acid transport and metabolism. The functional categories of bacterial communities were mainly focused on the carbohydrate and amino acid metabolism, xenobiotics biodegradation and metabolism, membrane transport, and so on. Overall, these findings highlight the potential guideline for more adequate monitoring of microbial degradation of crude oil. 展开更多
关键词 Crude oil BIOAUGMENTATION KINETICS Enzyme activities microbial functions
在线阅读 下载PDF
Effect of Long-Term Application of Chemical Fertilizers on Microbial Biomass and Functional Diversity of a Black Soil 被引量:22
3
作者 KONG Wei-Dong ZHU Yong-Guan +3 位作者 FU Bo-Jie HAN Xiao-Zeng ZHANG Lei HE Ji-Zheng 《Pedosphere》 SCIE CAS CSCD 2008年第6期801-808,共8页
An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to exam... An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to examine the effect of long-term continuous application of chemical fertilizers on microbial biomass and functional diversity of a black soil (Udoll in the USDA Soil Taxonomy) in Northeast China. The soil microbial biomass C ranged between 94 and 145 mg kg-1, with the NK treatment showing a lower biomass; the functional diversity of soil microbial community ranged from 4.13 to 4.25, with an increasing tendency from control to double-fertilizer treatments, and to triple-fertilizer treatments. The soil microbial biomass, and the microbial functional diversity and evenness did not show any significant differences among the different fertilizer treatments including control, suggesting that the long-term application of chemical fertilization would not result in significant changes in the microbial characteristics of the black soil. 展开更多
关键词 BIOLOG black soil chemical fertilizer microbial biomass microbial functional diversity
在线阅读 下载PDF
Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity 被引量:25
4
作者 FANG Hua YU Yunlong +3 位作者 CHU Xiaoqiang WANG Xiuguo YANG Xiaoe YU Jingquan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第3期380-386,共7页
Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels o... Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity. 展开更多
关键词 BIOLOG CHLORPYRIFOS community-level physiological profile microbial functional diversity
在线阅读 下载PDF
Tolerance of Grasses to Heavy Metals and Microbial Functional Diversity in Soils Contaminated with Copper Mine Tailings 被引量:19
5
作者 TENG Ying LUO Yong-Ming +3 位作者 HUANG Chang-Yong LONG Jian LI Zhen-Gao P. CHRISTIE 《Pedosphere》 SCIE CAS CSCD 2008年第3期363-370,共8页
Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals i... Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China. All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture. However, on pure mine tailings, the growth was minimal, whereas the growth was maximum for the control without mine tailings. The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum 〉 Festuea arundinaeea 〉 Lolium perenne 〉 Cynodon daetylon. The planting of forage grasses enhanced the soil microbial biomass. The Biolog data indicated that the soil microbial metabolic profile values (average well color development, community richness, and Shannon index) of the four forage grasses also followed the sequence: P. notatum 〉 F. arundinaeea 〉 L. perenne 〉 C. daetylon. Thus, P. notatum, under the experimental conditions of this study, may be considered as the preferred plant species for revegetation of Cu mine tailing areas. 展开更多
关键词 copper mine tailings forage grass heavy metal pollution microbial functional diversity
在线阅读 下载PDF
Effect of Intensive Inorganic Fertilizer Application on Microbial Properties in a Paddy Soil of Subtropical China 被引量:5
6
作者 Klemens Ekschmitt Stephanie I J Holzhauer Sabine Rauch 《Agricultural Sciences in China》 CAS CSCD 2011年第11期1758-1764,共7页
A field experiment with rice-rice rotation was conducted since 2002 in southeast China for investigating the response of soil microbial properties to intensive nitrogen fertilizer application. The tested soil was a su... A field experiment with rice-rice rotation was conducted since 2002 in southeast China for investigating the response of soil microbial properties to intensive nitrogen fertilizer application. The tested soil was a subtropical paddy soil derived from Quaternary red clay. Differences between treatments existed in different application rates of urea when the experiment was designed. Urea was applied in five rates, i.e., 0, 0.5, 1, 1.5, and 2 U, equivalent to 0, 0.5, 1, 1.5, and 2 times the local average amount of urea application (900 kg urea ha-~ yr-~, equivalent to 414 kg N ha-1 yr-~). In 2007, soil total nitrogen, available nitrogen, and soil organic carbon contents were increased by 10.2-27.9, 8.0-16.0, and 10.2-30.6%, respectively, in treatments with urea application rates of 0.5 to 2 U compared to control (0 U). Microbial biomass carbon and nitrogen were also increased by 3.1-30.8 and 1.3-13.9%, respectively, in treatments with urea application. Basal respiration in treatments with urea input were 9.4-29.1% higher than that in control. However, changes of bacterial functional diversity had different trends. Urea fertilization enhanced bacterial functional diversity until treatment of 1 U, but re-decreased it from treatment of 1.5 U. Principal components analysis indicated that there were intimate relationships among soil organic matter, nitrogen nutrient, microbial biomass, and respiration. Nevertheless, microbial diversity was related to soil moisture contents after urea application. We conclude here that the application of N fertilizer improved soil microbial biomass and respiratory activity. But, microbial diversity was reduced when excessive urea was applied in the tested paddy soil. 展开更多
关键词 paddy soil intensive N application microbial properties microbial functional diversity red soil region
在线阅读 下载PDF
Microbial Development in Soils Under Intensively Managed Bamboo (Phyllostachys praecox) Stands 被引量:3
7
作者 XUQiu-Fang JIANGPei-Kun 《Pedosphere》 SCIE CAS CSCD 2005年第1期33-40,共8页
Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to unders... Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties. 展开更多
关键词 microbial biomass carbon microbial functional diversity microbial respiration carbon Phyllostachys praecox SOIL
在线阅读 下载PDF
Changes in Transformation of Soil Organic C and Functional Diversity of Soil Microbial Community Under Different Land Uses 被引量:22
8
作者 LI Zhong-pei WU Xiao-chen CHEN Bi-yun 《Agricultural Sciences in China》 CAS CSCD 2007年第10期1235-1245,共11页
Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small water... Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality. 展开更多
关键词 land use patterns transformation of soil organic carbon functional diversity of soil microbial community
在线阅读 下载PDF
Microbial Community Composition and Function in Sediments from the Pearl River Mouth Basin 被引量:3
9
作者 CHEN Ye MI Tiezhu +2 位作者 LIU Yueteng LI Siqi ZHEN Yu 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第4期941-953,共13页
This study was conducted to characterize the diversity and function of microbial communities in marine sediments of the Pearl River Mouth Basin(PRMB)in the South China Sea.The results showed that the bacterial and arc... This study was conducted to characterize the diversity and function of microbial communities in marine sediments of the Pearl River Mouth Basin(PRMB)in the South China Sea.The results showed that the bacterial and archaeal communities varied greatly with depth.Proteobacteria in bacterial communities and Nitrososphaeria and Woesearchaeota in archaeal communities were dominant in the shallow sediments(1-40 cm),while Chloroflexi in bacterial communities and Bathyarchaeia in archaeal communities were dominant in the deep sediments(50-200 cm).Regarding ecological functions based on the metatranscriptomic data,genes involved in various pathways of nitrogen metabolism and sulfur metabolism were observed in the tested sediment samples.Metagenomic analysis revealed that Proteobacteria contribute the most to nearly all genes involved in nitrogen and sulfur metabolism.Moreover,Thaumarchaeota contribute the most to certain genes involved in nitrification,denitrification and assimilatory sulfate reduction pathways.The most abundant bacterial genus,Candidatus Scalindua,is crucial for nitrification,dissimilatory nitrate reduction,denitrification and assimilatory sulfate reduction pathways. 展开更多
关键词 microbial community and function high-throughput sequencing Pearl River Mouth Basin(PRMB)
在线阅读 下载PDF
Changes of soil microbial communities during decomposition of straw residues under different land uses 被引量:11
10
作者 ZHANG Hong XU Wenxin +3 位作者 LI Yubao LYU Jialong CAO Yingfei HE Wenxiang 《Journal of Arid Land》 SCIE CSCD 2017年第5期666-677,共12页
Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw d... Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw decomposition in three fields, i.e., cropland, peach orchard and vineyard. Straw decomposition was monitored for 360 d using a mesh-bag method. Soil microbial metabolic activity and functional diversity were measured using the Biolog-Eco system. In all three fields, dried straws with a smaller size decomposed faster than their fresh counterparts that had a larger size. Dried corn straw decomposed slower than dried soybean straw in the early and middle stages, while the reverse trend was found in the late stage. The cropland showed the highest increase in microbial metabolic activity during the straw decomposition, whereas the peach orchard showed the lowest. There was no significant change in the species dominance or evenness of soil microbial communities during the straw decomposition. However, the species richness fluctuated significantly, with the peach orchard showing the highest richness and the cropland the lowest. With different carbon sources, the peach orchard utilised carbon the most, followed by the cropland and the vineyard. In all three fields, carbon was utilized in following decreasing order: saccharides〉amino acids〉polymers〉polyamines〉carboxylic acids〉aromatic compounds. In terms of carbon-source utilization, soil microbial communities in the peach orchard were less stable than those in the cropland. The metabolic activity and species dominance of soil microbial communities were negatively correlated with the straw residual percentage. Refractory components were primarily accumulated in the late stages, thus slowing down the straw decomposition. The results showed that dried and crushed corn straw was better for application in long-term fields. The diversity of soil microbial communities was more stable in cropland than in orchards during the straw decomposition. 展开更多
关键词 long-term field straw decomposition soil microbial activity functional diversity carbon utilisation
在线阅读 下载PDF
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:6
11
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
在线阅读 下载PDF
Metagenomic insights into seasonal variations in the soil microbial community and function in a Larix gmelinii forest of Mohe,China 被引量:1
12
作者 Tong Bao Shilin Deng +2 位作者 Kaiyue Yu Weiyi Li Airong Dong 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第1期371-383,共13页
The eff ect of seasons on the soil microbiome in a Larix gmelinii forest of Mohe,China,where winter temperatures are generally below−40°C,was evaluated with metagenomics analysis.Taxonomic profi ling using sequen... The eff ect of seasons on the soil microbiome in a Larix gmelinii forest of Mohe,China,where winter temperatures are generally below−40°C,was evaluated with metagenomics analysis.Taxonomic profi ling using sequencing information revealed that Proteobacteria,Actinobacteria,Acidobacteria and Verrucomicrobia were the dominant phyla in spring,summer,and fall,as were Bradyrhizobium,Chthoniobacter,Streptomyces,Acid Candidatus Koribacter at the genus level.Some species that were abundant in spring and fall greatly diminished in abundance in summer.Clusters of orthologous groups(COG)of proteins,carbohydrate-active enzymes(CAZy),Kyoto Encyclopedia of Genes and Genomes(KEGG)and NCBI databases were used to elucidate the function of diverse proteins and metabolites of the microbial community of L.gmelinii forest.COG analysis showed that fewer genes were detected in spring than in fall and summer,indicating that many soil microbes in the L.gmelinii forest were not tolerant to cold.Based on KEGG analysis,some pathways in the soil microbes were activated in spring and autumn and deactivated in summer.CAZy analysis revealed that most CAZy were more active in summer than in spring or autumn and were severely inhibited in the spring.Many functional pathways,proteins,and CAZy involved in the community changes were concerned with cold or heat resistance.Therefore,the soil in the L.gmelinii forest can be a valuable resource for further research on heat and cold tolerance of soil microbes. 展开更多
关键词 Soil microbial community microbial function METAGENOMIC Seasonal variation
在线阅读 下载PDF
Application Effect of Functional Microbial Products in the Cultivation of Green Ecological Strawberry
13
作者 Houjun HE Shuwei YAO +2 位作者 Defu LI Muxiang JI Yushan QIAO 《Asian Agricultural Research》 2023年第2期46-47,54,共3页
In order to promote the transformation and high-quality development of strawberry industry and speed up the application of functional microbial products in strawberry,the application technology of functional microbial... In order to promote the transformation and high-quality development of strawberry industry and speed up the application of functional microbial products in strawberry,the application technology of functional microbial products in strawberry planting is studied and summarized.It mainly includes:the periods and methods of continuous cropping strawberry soil reduction and disinfection at high temperature,before and after strawberry planting,before plastic film mulching and whole process of plant spraying.Through multi-point test and demonstration,the purpose of advancing the season of strawberries,improving the quality,increasing production and increasing efficiency is achieved,and there is no risk of agricultural residue pollution,which meets the needs of people's consumption upgrading.Therefore,the application of functional microbial products in green ecological planting is very necessary,and it is worth further speeding up the demonstration and promotion. 展开更多
关键词 Functional microbial products Strawberry cultivation Application effect
在线阅读 下载PDF
Synergistic effect of microplastics and cadmium on microbial community and functional taxa in wheat rhizosphere soil
14
作者 Jianhong Ji Yingying Zhong +6 位作者 Mouliang Xiao Xianting Wang Zhi’e Hu Mianjin Zhan Jina Ding Zhenke Zhu Tida Ge 《Soil Ecology Letters》 2025年第1期79-89,共11页
Microplastics and heavy metal contamination poses major threats to soil function and food security;however,their synergistic effects remain largely unclear.This study investigated the effects of single or combined add... Microplastics and heavy metal contamination poses major threats to soil function and food security;however,their synergistic effects remain largely unclear.This study investigated the effects of single or combined addition of polyethylene(PE)microplastic(1%w/w)and cadmium(Cd;1.5 and 5 mg kg–1)on functional microbial communities in the wheat rhizosphere soil.We observed that the biomass of wheat increased by 142.44%under high doses of Cd addition.The bacterial alpha diversity in wheat bulk soil reduced by 37.34%–37.83%with the combined addition of microplastic and Cd.The addition of microplastic reduced the relative abundance of Proteus involved in nitrogen fixation by 19.93%,while the relative abundance of Proteus and Actinobacteria involved in nitrogen cycling increased with the increase of Cd concentration,increasing by 27.96%–37.37%and 51.14%–55.04%,respectively.FAPROTAX analysis revealed that increasing Cd concentration promoted the abundance of functional bacterial communities involved in nitrification/denitrification and nitrate/nitrite respiration in rhizosphere soil.A FunGuild analysis showed that the synergy of PE-microplastics and Cd increased the abundance of saprophytic fungi,suggesting an enhanced degradation function.Our findings provide new knowledge on the effects of microplastics and heavy metals on soil microorganisms and functional microbial communities in agricultural soil. 展开更多
关键词 microplastics CADMIUM bacteria and fungi microbial function taxa
原文传递
Changes in bacterial community and abundance of functional genes in paddy soil with cry1Ab transgenic rice 被引量:1
15
作者 SONG Ya-na CHEN Zai-jie +2 位作者 WU Ming-ji LI Gang WANG Feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1674-1686,共13页
A field experiment involving cry1Ab transgenic rice(GM) and its parental non-cry1Ab rice(M) has been on-going since 2014. The diversity of the bacterial communities and the abundance of the microbial functional genes ... A field experiment involving cry1Ab transgenic rice(GM) and its parental non-cry1Ab rice(M) has been on-going since 2014. The diversity of the bacterial communities and the abundance of the microbial functional genes which drive the conversion of nitrogen in paddy soil were analyzed during the growth period of rice in the fifth year of the experiment, using 16 S rRNAbased Illumina Mi Seq and real-time PCR on the amoA, nirS and nirK genes. The results showed no differences in the alpha diversity indexes of the bacterial communities, including Chao1, Shannon and Simpson, between the fields cultivated with line GM and cultivar M at any of the growth stages of rice. However, the bacterial communities in the paddy soil with line GM were separated from those of paddy soil with cultivar M at each of the growth stages of rice, based on the unweighted Uni Frac NMDS or PCoA. In addition, the analyses of ADONIS and ANOSIM, based on the unweighted Uni Frac distance, indicated that the above separations between line GM and cultivar M were statistically significant(P<0.05) during the growth season of rice. The increases in the relative abundances of Acidobacteria or Bacteroidetes, in the paddy soils with line GM or cultivar M, respectively, led to the differences in the bacterial communities between them. At the same time, functional gene prediction based on Illumina Mi Seq data suggested that the abundance of many functional genes increased in the paddy soil with line GM at the maturity stage of rice, such as genes related to the metabolism of starch, amino acids and nitrogen. Otherwise, the copies of bacterial amo A gene, archaeal amo A gene and denitrifying bacterial nir K gene significantly increased(P<0.05 or 0.01) in the paddy soil with line GM. In summary, the release of cry1Ab transgenic rice had effects on either the composition of bacterial communities or the abundance of microbial functional genes in the paddy soil. 展开更多
关键词 cry1Ab transgenic rice bacterial community microbial functional gene Illumina MiSeq Platform real-time PCR
在线阅读 下载PDF
Partial function prediction of sulfate-reducing bacterial community from the rhizospheres of two typical coastal wetland plants in China 被引量:1
16
作者 Xiaoyue SONG Jiangning ZENG +7 位作者 Yi ZHOU Quanzhen CHEN Hongsheng YANG Lu SHOU Yibo LIAO Wei HUANG Ping DU Qiang LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第1期185-197,共13页
Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing act... Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing activity and thus play signifi cant roles in organic carbon remineralization,benthic geochemical action,and plant-microbe interactions.Recent studies have provided credible evidence that the functional rather than the taxonomic composition of microbes responds more closely to environmental factors.Therefore,in this study,functional gene prediction based on PacBio single molecular real-time sequencing of 16S rDNA was applied to determine the sulfate-reducing and organic substrate-decomposing activities of SRB in the rhizospheres of two typical coastal wetland plants in North and South China:Zostera japonica and Scirpus mariqueter.To this end,some physicochemical characteristics of the sediments as well as the phylogenetic structure,community composition,diversity,and proportions of several functional genes of the SRB in the two plant rhizospheres were analyzed.The Z.japonic a meadow had a higher dissimilatory sulfate reduction capability than the S.mariqueter-comprising saltmarsh,owing to its larger proportion of SRB in the microbial community,larger proportions of functional genes involved in dissimilatory sulfate reduction,and the stronger ability of the SRB to degrade organic substrates completely.This study confi rmed the feasibility of applying microbial community function prediction in research on the metabolic features of SRB,which will be helpful for gaining new knowledge of the biogeochemical and ecological roles of these bacteria in coastal wetlands. 展开更多
关键词 sulfate-reducing bacteria(SRB) microbial community function prediction 16S rDNA PacBio SMRT sequencing Zostera japonica Scirpus mariqueter RHIZOSPHERE
在线阅读 下载PDF
The role of biocrusts in nitrogen cycling on the tropical reef islands,South China Sea
17
作者 Lin Wang Si Zhang Jie Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第4期116-126,共11页
Harboring polyextremotolerant microbial topsoil communities,biological soil crusts(biocrusts)occur across various climatic zones,and have been well studied in the terrestrial drylands.However,little is known about the... Harboring polyextremotolerant microbial topsoil communities,biological soil crusts(biocrusts)occur across various climatic zones,and have been well studied in the terrestrial drylands.However,little is known about the functional metabolic potential of microbial communities involved in the biogeochemical processes during the early succession of biocrusts on the tropical reef islands.We collected 26 biocrusts and bare soil samples from the Xisha Islands and Nansha Islands,and applied a functional gene array(GeoChip 5.0)to reveal nitrogen(N)cycling processes involved in these samples.Both physicochemical measurement and enzyme activity assay were utilized to characterize the soil properties.Results revealed the composition of N-cycling functional genes in biocrusts was distinct from that in bare soil.Additionally,microorganisms in biocrusts showed lower functional potential related to ammonification,denitrification,N assimilation,nitrification,N fixation,and dissimilatory nitrate reduction to ammonium compared to bare soils.Although the abundance of nifH gene was lower in biocrusts,nitrogenase activity was significantly higher compared to that in bare soils.Precipitation,soil physicochemical properties(i.e.,soil available copper,soil ammonia N and pH)and soil biological properties(i.e.,β-glucosidase,fluorescein diacetate hydrolase,alkaline protease,urease,alkaline phosphatase,catalase and chlorophyll a)correlated to the N-cycling functional genes structure.Nitrate N and ammonia N were more abundant in biocrusts than bare soil,while pH value was higher in bare soil.Our results suggested biocrusts play an important role in N-cycling in coral sand soil,and will be helpful in understanding the development and ecological functions of biocrusts on tropical reef islands. 展开更多
关键词 biocrusts microbial functional structure metabolic potential nitrogen cycling tropical reef islands
在线阅读 下载PDF
Effects of Different Halophytes on Soil Microflora and Enzyme Acti-vities of Saline-alkali Soil
18
作者 Wang Xue-qin Zhang Feng-ju +1 位作者 Xu Xing Lu An-qiao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第3期28-36,共9页
In the pot experiment,seven varieties of halophytes were grown in saline-alkali soil to investigate the responses of microflora and soil enzymes in the rhizosphere.The results showed that compared to the control,the p... In the pot experiment,seven varieties of halophytes were grown in saline-alkali soil to investigate the responses of microflora and soil enzymes in the rhizosphere.The results showed that compared to the control,the population of bacterial colony(84.8%-95.6%),actinomycetes colony(12.0%-14.5%)and fungi colony(0.5%-1.1%)increased significantly(P<0.05).The population of ammonia bacteria,aerobic cellulose decomposition bacteria in the soil of Vicia sativa L.(201.99%and 395.49%),Medicago sativa(152.43%and 319.90%)and Sesbania cannabina(Retz.)Pori(193.14%and 396.08%)were higher significantly than that of Panicum virgatum L.(49%and 60%),Sorghum bicolor(L.)Moench(99%and 210%),Amaranthus hypochondriacus L.(75%and 36%)and Aneurotepidimu chinense(75%and 77%)(P<0.05).However,Sorghum bicolor(L.)Moench was evidently higher than Panicum virgatum L.,Amaranthus hypochondriacus L.and Aneurotepidimu chinense(P<0.05)in the soil.The population of ammonia bacteria and aerobic cellulose-decomposing bacteria was significantly correlated with the five enzymes(P<0.05),which could improve the microenvironment in saline-alkali soil to accelerate the element cycling and promote the sustainable development of agriculture through cultivating Medicago sativa,Vicia sativa L.,Sesbania cannabina(Retz.)Pori and Sorghum bicolor(L.)Moench. 展开更多
关键词 saline-alkali soil HALOPHYTES MICROFLORA soil enzyme functional microbial population
在线阅读 下载PDF
The effects of biochar on soil nutrients status,microbial activity and carbon sequestration potential in two calcareous soils 被引量:7
19
作者 Allahyar Khadem Fayez Raiesi +1 位作者 Hossein Besharati Mohammad Ali Khalaj 《Biochar》 2021年第1期105-116,共12页
Biochar as an organic amendment improves soil attributes,with a potentially significant effect on soil chemical fertility and quality.The main objective of this study was to quantify the effect of biochar addition on ... Biochar as an organic amendment improves soil attributes,with a potentially significant effect on soil chemical fertility and quality.The main objective of this study was to quantify the effect of biochar addition on nutrients,carbon sequestra-tion and microbial activity and understand the mechanisms of controlling biochar effects in calcareous soils.Maize residue biochars produced at 200,400 and 600℃ were added at 5 and 10 g kg^(−1)rates to sandy loam and clayey texture calcareous soils.The soil properties measured were pH and electrical conductivity(EC),plant-available potassium(K)and available phosphorus(P),total nitrogen(TN),C sequestration;and the fluorescein diacetate(FDA)hydrolysis activity.Addition of raw material and biochars increased pH(0.15-0.46 units),EC(0.14-0.38 dS m^(−1)),TN(63-120%),K(12-41%)and FDA activity(27-280%),but tended to decrease plant-available P(23-86%).Increasing pyrolysis temperature increased soil C pool index(CPI),but decreased the FDA and the changes depended largely upon the application rate and soil texture.The positive effects of biochar addition and its pyrolysis temperature on soil C sequestration potential were more pronounced at high than low application rate and in sandy loam than clayey soils.Nevertheless,the effect of biochar addition and pyrolysis temperature on the FDA activity was higher at high than low application rates,but lower in sandy loam than clayey soils.Although biochar application may successfully improve soil processes and attributes and have a high potential for C seques-tration,its effects are controlled by soil texture,pyrolysis temperature and application rate. 展开更多
关键词 Biochar amendment Chemical composition Soil fertility microbial functions Arid soils
原文传递
Microbial influences on paleoenvironmental changes during the Permian-Triassic boundary crisis 被引量:4
20
作者 LUO GenMing XIE ShuCheng +1 位作者 LIU Deng Thomas J. ALGEO 《Science China Earth Sciences》 SCIE EI CAS 2014年第5期965-975,共11页
The biosphere interacts and co-evolves with natural environments.Much is known about the biosphere’s response to ancient environmental perturbations,but less about the biosphere’s influences on environmental change ... The biosphere interacts and co-evolves with natural environments.Much is known about the biosphere’s response to ancient environmental perturbations,but less about the biosphere’s influences on environmental change through earth history.Here,we discuss the roles of microbes in environmental changes during the critical Permian-Triassic(P-Tr)transition and present a perspective on future geomicrobiological investigations.Lipid biomarkers,stable isotopic compositions of carbon,nitrogen and sulfur,and mineralogical investigations have shown that a series of microbial functional groups might have flourished during the P-Tr transition,including those capable of sulfate reduction,anaerobic H2S oxidation,methanogenesis,aerobic CH4oxidation,denitrification,and nitrogen fixation.These microbes may have served to both enhance and degrade the habitability of the Earth-surface environment during this crisis.The integrated microbial roles have enabled the Earth’s exosphere to be a self-regulating system. 展开更多
关键词 microbial functional groups (MFGs) PERMIAN TRIASSIC mass extinction CO-EVOLUTION
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部