Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.A...Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration,promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions.The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties.However,a comprehensive understanding of the underlying mechanisms remains somewhat elusive,limiting the broader application of these innovations.In this review,we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin.The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration.The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity,facilitating efficient cellular reprogramming and,consequently,promoting the regeneration of skin appendages.In summary,the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing,coupled with the restoration of multiple skin appendage functions.展开更多
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory....The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.展开更多
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li...In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati...Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.展开更多
Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with...Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with the increase in solidsolution temperature,and the elongation first increases and then decreases.The the amount of nanoscale Ti-rich phases precipitated in low-oxygen TZM alloys gradually increases with the increase in solid-solution temperature.Special strip-shaped Ti-rich areas appear in the samples solidified at 1200 and 1300℃.The nanoscale Ti-rich phases ensure the uniform distribution of dislocations throughout TZM alloy,while significantly improving the plasticity of low-oxygen TZM alloy samples.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement...Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.展开更多
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0....To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.展开更多
Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.F...Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.For this,we conducted uniaxial compression tests,acoustic emission(AE)monitoring and scanning electron microscope(SEM)tests on carbonaceous slate.The results show that the strength,failure mode,and AE characteristics exhibit marked anisotropy with the angle between the axial and the foliation(β).Asβincreases,the ultrasonic wave velocity decreases monotonically,whereas the uniaxial compressive strength(UCS)displays a distinctive U-shaped trend.The elastic modulus initially decreases and then increases.The cumulative AE counts curve and energy curve show a stepped growth whenβ≤45°.The AE events are active during the crack compaction phase and remain calm during the linear elastic deformation phase whenβ>45°.Upon failure,the energy release accounts for the highest proportion(67%)whenβ=45°,while the proportions in other cases are less than 37%.The maximum percentage(31%)of shear cracks is reported whenβ=60°,which is six times greater than that atβ=0°.Moreover,Kernel density estimation analysis reveals that the high concentration area with low AF(AE counts/duration time)and high RA(rise time/amplitude)increases initially,and then decreases whenβ>60°.In addition,nine types of cracks and seven modes of failure were identified.The foliation angle has a pronounced impact on shear failure modes in comparison with tensile failure modes.The supports could suffer larger deformation whenβ≥60°compared to other cases.The failure behaviors correspond well with field observations.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh...Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential.展开更多
Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the...Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the excised region. Accumulation of DNA damage with failure of repair processes leads to fatal diseases such as cancer. Recent studies have suggested that intra- and extra-nuclear environments play essential roles in DNA damage. However, numerous questions regarding the role of the nuclear mechanical environment in DNA damage remain unanswered. In this study, we investigated the effects of cell confluency (cell crowding) on the morphology of cell nuclei, and cytoskeletal structures, and DNA damage in NIH3T3 skin fibroblasts and HeLa cervical cancer cells. Although nuclear downsizing was observed in both NIH3T3 and HeLa cells with cell crowding, intracellular mechanical changes in the two cell types displayed opposite tendencies. Cell crowding in NIH3T3 cells induced reinforcement of actin filament structures, cell stiffening, and nuclear downsizing, resulting in a significant decrease in endogenous DNA damage, whereas cell crowding in HeLa cells caused partial depolymerization of actin filaments and cell softening, inducing endogenous DNA damage. Ultraviolet (UV) radiation significantly increased DNA damage in NIH3T3;however, this response did not change with cell crowding. In contrast, UV radiation did not cause DNA damage in HeLa cells under either sparse or confluent conditions. These results suggested that cell crowding significantly influenced endogenous DNA damage in cells and was quite different in NIH3T3 and HeLa cells. However, cell crowding did not affect the UV-induced DNA damage in either cell type.展开更多
The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate o...The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2).展开更多
The refractory metal rhenium(Re),with content of 0−2 at.%,was introduced into a typicalγ-TiAl alloy of Ti−48Al−2Cr−2Nb(at.%)through vacuum arc melting.The effect of Re content on the microstructure and mechanical pro...The refractory metal rhenium(Re),with content of 0−2 at.%,was introduced into a typicalγ-TiAl alloy of Ti−48Al−2Cr−2Nb(at.%)through vacuum arc melting.The effect of Re content on the microstructure and mechanical properties of theγ-TiAl alloy was investigated.The results show that theγ-TiAl−xRe alloy is composed ofγ,α2,andβphases.As the Re content increases,the proportion ofβphase increases,while the content and size ofα2+γlamellar structure decrease gradually.Furthermore,the compressive strength increases with increasing Re content.A maximum compressive strength of 2282 MPa is achieved for theγ-TiAl−2Re alloy.Theγ-TiAl−2Re alloy exhibits a fracture strain of 36.7%,considerably higher than that of theγ-TiAl alloy(31.0%).Moreover,compared with theγ-TiAl alloy,the hardness and compressive strength of theγ-TiAl−2Re alloy considerably increase by 17.5%and 34.2%,respectively.展开更多
Scorpions are distributed almost all over the world and inhabit rainforests,deserts,mountains,and littoral zones.Their multifunctional chelae play a key role in their biology.The chela is the pincer that has originate...Scorpions are distributed almost all over the world and inhabit rainforests,deserts,mountains,and littoral zones.Their multifunctional chelae play a key role in their biology.The chela is the pincer that has originated from the last two segments of the pedipalp.Many previous studies have focused on the morphology of the chela and the overall pincer force.The knowledge about the material properties of scorpion chelae remains rather poor.In particular,little is known about the spines located on the grasping edge of the chela.In this study,we use a combination of nanoindentation,micro-computer tomography,confocal laser scanning microscopy,scanning electron microscopy and energy-dispersive X-ray elemental analysis,to examine the mechanical properties,relative density,sclerotization level,microstructure and biomineralization of both the regular cuticle and the spine cuticle of the chela in the scorpion Androctonus bicolor.Our results show that the mechanical property values of the spine cuticle are significantly higher than those of the regular cuticle.This can reduce the risk of damage to the chela,increase the chance of indentation into the prey tissue and is very likely to result from both higher sclerotization level and biomineralization due to the accumulation of zinc.The specialized microstructure of the cuticle could contribute to the enhancement of the stiffness,strength and toughness of the chela.This study aids in better understanding the material structure,composition and properties of the scorpion chela cuticle.展开更多
This paper presents a novel technique for low-power generation of frequency combs(FC)over a wide frequency range.It leverages modal interactions between electrical and mechanical resonators in electrostatic NEMS opera...This paper presents a novel technique for low-power generation of frequency combs(FC)over a wide frequency range.It leverages modal interactions between electrical and mechanical resonators in electrostatic NEMS operating in air to provide a simple architecture for FC generators.A biased voltage signal drives the electrical resonator at resonance which is set to match an integer submultiple of twice the mechanical resonator’s resonance.Experimental results demonstrate that the NEMS displacement exhibit more than 150 equidistant peaks in the case of a 2:1 modal interaction and more than 60 equidistant peaks in the case of a 1:1 modal interaction.In both cases,the Free Spectral Range(FSR)was equal to the mechanical resonance frequency.Comparison between the FCs generated by the 2:1 and 1:1 modal interactions demonstrate the superiority of the former in terms of bandwidth and stability.The superior phase coherence of the FC generated via the 2:1 modal interaction was demonstrated via time-domain analysis.Our technique has the flexibility to generate multiple frequency combs and to fine-tune their FSR depending on the number of mechanical modes accessible to and the order of the activated modal interaction.It can be integrated into portable devices and is well aligned with modern miniaturization technology.展开更多
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金supported in part by the National Nature Science Foundation of China(92268206,81830064)the CAMS Innovation Fund for Medical Sciences(CIFMS,2019-I2M-5-059)+4 种基金the Military Medical Research Projects(145AKJ260015000X,2022-JCJQ-ZB-09600)the Military Key Basic Research of Foundational Strengthening Program(2020-JCJQ-ZD-256-021)the Science Foundation of National Defense Science and Technology for Excellent Young(2022-JCJQ-ZQ-017)the Military Medical Research and Development Projects(AWS17J005,2019-126)the Specific Research Fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202317).
文摘Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages,ultimately impairing its normal physiological function.Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration,promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions.The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties.However,a comprehensive understanding of the underlying mechanisms remains somewhat elusive,limiting the broader application of these innovations.In this review,we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin.The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration.The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity,facilitating efficient cellular reprogramming and,consequently,promoting the regeneration of skin appendages.In summary,the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing,coupled with the restoration of multiple skin appendage functions.
基金Funded by National Key R&D Program of China(No.2021YFB3802300)the National Natural Science Foundation of China(No.52171045)the Joint Fund(No.8091B022108)。
文摘The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52108260)China Academy of Railway Sciences Fund(No.2021YJ078)+1 种基金Railway Engineering Construction Standard Project(No.2023-BZWW-006)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金financed by the European Union-Next Generation EU(National Sustainable Mobility Center CN00000023,Italian Ministry of University and Research Decree n.1033-17/06/2022,Spoke 11-Innovative Materials&Lightweighting)。
文摘Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.
基金Outstanding Doctorate Dissertation Cultivation Fund of Xi'an University of Architecture and Technology(160842012)National Natural Science Foundation of China(52404409,52374401,52104382)+3 种基金China Postdoctoral Science Foundation(2024MD753961)Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan(2022TD-30)Key R&D Plan of Shaanxi Province(2023JBGS-14,2024QCYKXJ-116)Xi'an Science and Technology Plan Project(24ZDCYJSGG0043,2023JH-GXRC-0020)。
文摘Low-oxygen TZM alloy(oxygen content of 0.03vol%)was subjected to solid-solution heat treatment at various temperatures followed by quenching.Results show that the tensile strength of the alloy gradually decreases with the increase in solidsolution temperature,and the elongation first increases and then decreases.The the amount of nanoscale Ti-rich phases precipitated in low-oxygen TZM alloys gradually increases with the increase in solid-solution temperature.Special strip-shaped Ti-rich areas appear in the samples solidified at 1200 and 1300℃.The nanoscale Ti-rich phases ensure the uniform distribution of dislocations throughout TZM alloy,while significantly improving the plasticity of low-oxygen TZM alloy samples.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
文摘Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.
基金National Natural Science Foundation of China(52105385)Stable Support Plan Program of Shenzhen Natural Science Fund(20220810132537001)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515010781)Joint Fund of Henan Province Science and Technology R&D Program(225200810002)Fundamental Research Funds of Henan Academy of Sciences(240621041)。
文摘To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.
基金supported by the National Natural Science Foundation of China (Grant No.U22A20234)Hubei Province key Research and Development Project (Grant No.2023BCB121).
文摘Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.For this,we conducted uniaxial compression tests,acoustic emission(AE)monitoring and scanning electron microscope(SEM)tests on carbonaceous slate.The results show that the strength,failure mode,and AE characteristics exhibit marked anisotropy with the angle between the axial and the foliation(β).Asβincreases,the ultrasonic wave velocity decreases monotonically,whereas the uniaxial compressive strength(UCS)displays a distinctive U-shaped trend.The elastic modulus initially decreases and then increases.The cumulative AE counts curve and energy curve show a stepped growth whenβ≤45°.The AE events are active during the crack compaction phase and remain calm during the linear elastic deformation phase whenβ>45°.Upon failure,the energy release accounts for the highest proportion(67%)whenβ=45°,while the proportions in other cases are less than 37%.The maximum percentage(31%)of shear cracks is reported whenβ=60°,which is six times greater than that atβ=0°.Moreover,Kernel density estimation analysis reveals that the high concentration area with low AF(AE counts/duration time)and high RA(rise time/amplitude)increases initially,and then decreases whenβ>60°.In addition,nine types of cracks and seven modes of failure were identified.The foliation angle has a pronounced impact on shear failure modes in comparison with tensile failure modes.The supports could suffer larger deformation whenβ≥60°compared to other cases.The failure behaviors correspond well with field observations.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金the Puncak RM for the project under the grant 6733204-13069 to carry out the experiments。
文摘Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential.
文摘Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the excised region. Accumulation of DNA damage with failure of repair processes leads to fatal diseases such as cancer. Recent studies have suggested that intra- and extra-nuclear environments play essential roles in DNA damage. However, numerous questions regarding the role of the nuclear mechanical environment in DNA damage remain unanswered. In this study, we investigated the effects of cell confluency (cell crowding) on the morphology of cell nuclei, and cytoskeletal structures, and DNA damage in NIH3T3 skin fibroblasts and HeLa cervical cancer cells. Although nuclear downsizing was observed in both NIH3T3 and HeLa cells with cell crowding, intracellular mechanical changes in the two cell types displayed opposite tendencies. Cell crowding in NIH3T3 cells induced reinforcement of actin filament structures, cell stiffening, and nuclear downsizing, resulting in a significant decrease in endogenous DNA damage, whereas cell crowding in HeLa cells caused partial depolymerization of actin filaments and cell softening, inducing endogenous DNA damage. Ultraviolet (UV) radiation significantly increased DNA damage in NIH3T3;however, this response did not change with cell crowding. In contrast, UV radiation did not cause DNA damage in HeLa cells under either sparse or confluent conditions. These results suggested that cell crowding significantly influenced endogenous DNA damage in cells and was quite different in NIH3T3 and HeLa cells. However, cell crowding did not affect the UV-induced DNA damage in either cell type.
文摘The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2).
基金Natural Science Foundation of Zhejiang Province,China(No.LQ21E040004)National Natural Science Foundation of China(No.52271040)+1 种基金State Key Lab of Advanced Metals and Materials,China(No.2021-Z03)State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘The refractory metal rhenium(Re),with content of 0−2 at.%,was introduced into a typicalγ-TiAl alloy of Ti−48Al−2Cr−2Nb(at.%)through vacuum arc melting.The effect of Re content on the microstructure and mechanical properties of theγ-TiAl alloy was investigated.The results show that theγ-TiAl−xRe alloy is composed ofγ,α2,andβphases.As the Re content increases,the proportion ofβphase increases,while the content and size ofα2+γlamellar structure decrease gradually.Furthermore,the compressive strength increases with increasing Re content.A maximum compressive strength of 2282 MPa is achieved for theγ-TiAl−2Re alloy.Theγ-TiAl−2Re alloy exhibits a fracture strain of 36.7%,considerably higher than that of theγ-TiAl alloy(31.0%).Moreover,compared with theγ-TiAl alloy,the hardness and compressive strength of theγ-TiAl−2Re alloy considerably increase by 17.5%and 34.2%,respectively.
基金financially supported by the Grant GO995/48-1 to S.N.G.from the National Priority Program SPP2416″Code-Chi-Chitin,chitosan and chitooligosaccharides and their interaction with proteins of the extracellular matrix and cellular signaling”of the German Science Foundation(DFG).
文摘Scorpions are distributed almost all over the world and inhabit rainforests,deserts,mountains,and littoral zones.Their multifunctional chelae play a key role in their biology.The chela is the pincer that has originated from the last two segments of the pedipalp.Many previous studies have focused on the morphology of the chela and the overall pincer force.The knowledge about the material properties of scorpion chelae remains rather poor.In particular,little is known about the spines located on the grasping edge of the chela.In this study,we use a combination of nanoindentation,micro-computer tomography,confocal laser scanning microscopy,scanning electron microscopy and energy-dispersive X-ray elemental analysis,to examine the mechanical properties,relative density,sclerotization level,microstructure and biomineralization of both the regular cuticle and the spine cuticle of the chela in the scorpion Androctonus bicolor.Our results show that the mechanical property values of the spine cuticle are significantly higher than those of the regular cuticle.This can reduce the risk of damage to the chela,increase the chance of indentation into the prey tissue and is very likely to result from both higher sclerotization level and biomineralization due to the accumulation of zinc.The specialized microstructure of the cuticle could contribute to the enhancement of the stiffness,strength and toughness of the chela.This study aids in better understanding the material structure,composition and properties of the scorpion chela cuticle.
基金K.M.acknowledges funding from the Canada Foundation for Innovation John R.Evans Leaders Fund(Project 35552)Ontario Research Fund—Research Infrastructure(Project 35552),the Waterloo Institute for Nanotechnology(WIN-NRC seed grant),and a Mitacs Globalink Research Award.
文摘This paper presents a novel technique for low-power generation of frequency combs(FC)over a wide frequency range.It leverages modal interactions between electrical and mechanical resonators in electrostatic NEMS operating in air to provide a simple architecture for FC generators.A biased voltage signal drives the electrical resonator at resonance which is set to match an integer submultiple of twice the mechanical resonator’s resonance.Experimental results demonstrate that the NEMS displacement exhibit more than 150 equidistant peaks in the case of a 2:1 modal interaction and more than 60 equidistant peaks in the case of a 1:1 modal interaction.In both cases,the Free Spectral Range(FSR)was equal to the mechanical resonance frequency.Comparison between the FCs generated by the 2:1 and 1:1 modal interactions demonstrate the superiority of the former in terms of bandwidth and stability.The superior phase coherence of the FC generated via the 2:1 modal interaction was demonstrated via time-domain analysis.Our technique has the flexibility to generate multiple frequency combs and to fine-tune their FSR depending on the number of mechanical modes accessible to and the order of the activated modal interaction.It can be integrated into portable devices and is well aligned with modern miniaturization technology.