Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory....The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li...In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati...Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement...Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the...Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the excised region. Accumulation of DNA damage with failure of repair processes leads to fatal diseases such as cancer. Recent studies have suggested that intra- and extra-nuclear environments play essential roles in DNA damage. However, numerous questions regarding the role of the nuclear mechanical environment in DNA damage remain unanswered. In this study, we investigated the effects of cell confluency (cell crowding) on the morphology of cell nuclei, and cytoskeletal structures, and DNA damage in NIH3T3 skin fibroblasts and HeLa cervical cancer cells. Although nuclear downsizing was observed in both NIH3T3 and HeLa cells with cell crowding, intracellular mechanical changes in the two cell types displayed opposite tendencies. Cell crowding in NIH3T3 cells induced reinforcement of actin filament structures, cell stiffening, and nuclear downsizing, resulting in a significant decrease in endogenous DNA damage, whereas cell crowding in HeLa cells caused partial depolymerization of actin filaments and cell softening, inducing endogenous DNA damage. Ultraviolet (UV) radiation significantly increased DNA damage in NIH3T3;however, this response did not change with cell crowding. In contrast, UV radiation did not cause DNA damage in HeLa cells under either sparse or confluent conditions. These results suggested that cell crowding significantly influenced endogenous DNA damage in cells and was quite different in NIH3T3 and HeLa cells. However, cell crowding did not affect the UV-induced DNA damage in either cell type.展开更多
The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate o...The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2).展开更多
Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have ga...Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have garnered increasing research interest.However,most metallic lattice structures generally exhibit anisotropic characteristics,which limits their application ranges.Additionally,a limited number of studies have successfully developed precise mechanical models,which have undergone experimental validation,for the purpose of describing the mechanical response exhibited by additively manufactured metallic lattice structures.In this study,Kelvin lattice structures with varying porosities were systematically designed and fabricated using laser powder bed fusion(LPBF)technology.By integrating finite element simulations with experimental characterization,an enhanced mechanical model was developed through a modification of the Gibson-Ashby model,providing an accurate quantitative description of the relationship between porosity and mechanical properties.The results show that the revised mechanical model can accurately describe the relationship between the geometric parameters and properties of metallic lattice structures.Specifically,the designed Kelvin lattice structures exhibit a smooth stress-strain curve with an obvious yield platform,demonstrating isotropic mechanical properties in all the three spatial directions.This enhances their suitability for complex loading conditions.Meanwhile,the microstructure and manufacturing accuracy of the Kelvin lattice structures were observed and analyzed by micro computed tomography.The results show that the fabricated metallic lattice structures achieved precise dimensional control and optimal densification.This study presents the complete process involved in modeling the Kelvin structure,including its conceptualization,manufacturing,implementation,and ultimately,disposal.展开更多
Scorpions are distributed almost all over the world and inhabit rainforests,deserts,mountains,and littoral zones.Their multifunctional chelae play a key role in their biology.The chela is the pincer that has originate...Scorpions are distributed almost all over the world and inhabit rainforests,deserts,mountains,and littoral zones.Their multifunctional chelae play a key role in their biology.The chela is the pincer that has originated from the last two segments of the pedipalp.Many previous studies have focused on the morphology of the chela and the overall pincer force.The knowledge about the material properties of scorpion chelae remains rather poor.In particular,little is known about the spines located on the grasping edge of the chela.In this study,we use a combination of nanoindentation,micro-computer tomography,confocal laser scanning microscopy,scanning electron microscopy and energy-dispersive X-ray elemental analysis,to examine the mechanical properties,relative density,sclerotization level,microstructure and biomineralization of both the regular cuticle and the spine cuticle of the chela in the scorpion Androctonus bicolor.Our results show that the mechanical property values of the spine cuticle are significantly higher than those of the regular cuticle.This can reduce the risk of damage to the chela,increase the chance of indentation into the prey tissue and is very likely to result from both higher sclerotization level and biomineralization due to the accumulation of zinc.The specialized microstructure of the cuticle could contribute to the enhancement of the stiffness,strength and toughness of the chela.This study aids in better understanding the material structure,composition and properties of the scorpion chela cuticle.展开更多
Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and capro...Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.展开更多
The iron content is one of the most critical parameters affecting the microstructure and mechanical properties of recycled aluminum alloy.This study aimed to compare the microstructure and tensile properties of alloys...The iron content is one of the most critical parameters affecting the microstructure and mechanical properties of recycled aluminum alloy.This study aimed to compare the microstructure and tensile properties of alloys with varying iron content to ascertain the optimal iron content for formulating a recycled Al-Si-Mg aluminum alloy.Additionally,the effects of aging temperature and aging time on the microstructure and mechanical properties of recycled aluminum alloy were investigated.With increasing aging temperature and time,both tensile strength and yield strength are improved,while elongation is decreased.Specifically,when subject to a heat treatment consisting of a solution treatment at 535℃for 5 h followed by an aging treatment at 170℃for5.5 h,the newly designed recycled aluminum alloy achieves a tensile strength of 291 MPa and a yield strength of 238 MPa.These findings hold significant implications for the further development and broader application of recycled aluminum alloys.展开更多
Calcareous sands are widely distributed on the coral reefs,continental shelf,and seashores between 30north and south latitude and are commonly utilized as filling materials for the construction of artificial islands a...Calcareous sands are widely distributed on the coral reefs,continental shelf,and seashores between 30north and south latitude and are commonly utilized as filling materials for the construction of artificial islands and infrastructure foundations.In this study,calcareous sands were cemented by enzymatically induced carbonate precipitation(EICP)technique.Drained triaxial tests were conducted on the EICPtreated calcareous sands.Results showed that the specimens with different cementation levels exhibited different responses in mechanical behavior.The differences in the sand fabric after consolidation under a relatively high confining pressure resulted in the untreated specimen exhibiting a higher peak strength compared to the lightly cemented specimen.High confining pressures exhibited a strongly inhibiting effect on dilatancy,which could be counteracted by increasing the cementation level.The EICP-treated specimen could have one or two yield points(smaller-strain and larger-strain yields).For lightly cemented specimens,the smaller-strain yield stress decreased under high confining pressures due to the partial carbonate bonding degradation during consolidation.The stress line of untreated particle breakage(UPB)was a critical boundary to distinguish failure mode in the p′-q space.For the EICP-treated specimens,the yield stress located above or below the UPB stress line indicates the simultaneous or sequential breakage of the carbonate bonds and sand particles,respectively.Accordingly,the EICPtreated specimen exhibited brittle or ductile properties.Failure mode transformation could be triggered by increasing cementation level or confining pressure.展开更多
Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si allo...Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si alloy has been a problem for many years.In this study,the effect of deep cryogenic treatment(DCT)on the microstructure and mechanical properties of Al-12Si-4Cu-2Ni-Mg alloy with addition of Al-Ti-C-B master alloy was fully investigated.Results show that the average grain size of the alloy is greatly reduced from 0.92 mm to 0.50 mm,and the eutectic Si and Al7Cu4Ni precipitates are spheroidized and refined in Al-12Si-4Cu-2Ni-Mg after DCT for 24 h and aging treatment.Thereby these changes of microstructures result in a significant increment of about 22.5%in elongation and a slight enhancement of about 6.8%in tensile strength.Moreover,the refinement of microstructure also significantly improves the fatigue life of the alloy.展开更多
In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between...In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between 0,1,2,5,and 10,the microstructure transitions from a dendritic structure to a hypo-eutectic structure as the Mo content increases from 0 to 5wt.%.Moreover,as the Mo content increases from 0 to 10wt.%,the distribution of theμ-phase shifts from being individually dispersed to forming aggregates,and its volume fraction rises from 0.5%to 7.9%.Notably,theμ-phase evolves into an eutectic microstructure,which helps in minimizing the segregation of elements.This change is accompanied by a substantial enhancement in mechanical properties;specifically,the compressive yield strength at room temperature increases from 350 MPa to 646 MPa,indicating a significant 85%increase.Similarly,the microhardness increases from 230 HV to 304 HV.Molecular dynamics simulations further reveal that the strengthening mechanism of Ni-42W-10Co-x Mo alloys is Mo-induced solid solution strengthening and precipitation strengthening.展开更多
In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)wit...In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)with limestone powder(stone powder)as a mineral admixture on the micro,meso,and macro properties of mortar.First,the applicability of stone powder was examined based on the physical filling and heat of hydration of stone powder-cement.Second,micro-meso testing methods,such as X-ray diffraction,scanning electron microscopy,thermogravimetry-differential scanning calorimetry,and nuclear magnetic resonance,were utilized to reveal the influencing mechanisms of stone powder on the microstructure of the mortar.Furthermore,the effect of stone powder on the compressive strength and gas permeability of the mortar was analyzed.Additionally,the time-dependent variations in the gas permeability and its functional relationship with the mechanical properties were determined.Finally,the correlation between the compressive strength and gas permeability with respect to the pore size of stone powder-doped mortar was established via gray-correlation analysis.The results show that an appropriate amount of stone powder(5%)can effectively improve the particle gradation,decelerate the release of the heat of hydration,increase the amount of hydration products,and improve the pore structure,thereby increasing the compressive strength and reducing the gas permeability coefficient.The gas permeability of stone powder-doped mortar was found to exhibit good time-dependent characteristics as well as a quadratic linear correlation with the compressive strength.The gray-correlation analysis results indicate that air pores exhibit the highest influence on the compressive strength and that the gas permeability coefficient is most significantly affected by large pores.展开更多
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金Funded by National Key R&D Program of China(No.2021YFB3802300)the National Natural Science Foundation of China(No.52171045)the Joint Fund(No.8091B022108)。
文摘The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52108260)China Academy of Railway Sciences Fund(No.2021YJ078)+1 种基金Railway Engineering Construction Standard Project(No.2023-BZWW-006)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金financed by the European Union-Next Generation EU(National Sustainable Mobility Center CN00000023,Italian Ministry of University and Research Decree n.1033-17/06/2022,Spoke 11-Innovative Materials&Lightweighting)。
文摘Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
文摘Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
文摘Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the excised region. Accumulation of DNA damage with failure of repair processes leads to fatal diseases such as cancer. Recent studies have suggested that intra- and extra-nuclear environments play essential roles in DNA damage. However, numerous questions regarding the role of the nuclear mechanical environment in DNA damage remain unanswered. In this study, we investigated the effects of cell confluency (cell crowding) on the morphology of cell nuclei, and cytoskeletal structures, and DNA damage in NIH3T3 skin fibroblasts and HeLa cervical cancer cells. Although nuclear downsizing was observed in both NIH3T3 and HeLa cells with cell crowding, intracellular mechanical changes in the two cell types displayed opposite tendencies. Cell crowding in NIH3T3 cells induced reinforcement of actin filament structures, cell stiffening, and nuclear downsizing, resulting in a significant decrease in endogenous DNA damage, whereas cell crowding in HeLa cells caused partial depolymerization of actin filaments and cell softening, inducing endogenous DNA damage. Ultraviolet (UV) radiation significantly increased DNA damage in NIH3T3;however, this response did not change with cell crowding. In contrast, UV radiation did not cause DNA damage in HeLa cells under either sparse or confluent conditions. These results suggested that cell crowding significantly influenced endogenous DNA damage in cells and was quite different in NIH3T3 and HeLa cells. However, cell crowding did not affect the UV-induced DNA damage in either cell type.
文摘The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2).
基金financially supported by the Liaoning Province Applied Fundamental Research Program (No.2023JH2/101700039)Liaoning Province Natural Science Foundation (No.2023-MSLH-328).
文摘Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have garnered increasing research interest.However,most metallic lattice structures generally exhibit anisotropic characteristics,which limits their application ranges.Additionally,a limited number of studies have successfully developed precise mechanical models,which have undergone experimental validation,for the purpose of describing the mechanical response exhibited by additively manufactured metallic lattice structures.In this study,Kelvin lattice structures with varying porosities were systematically designed and fabricated using laser powder bed fusion(LPBF)technology.By integrating finite element simulations with experimental characterization,an enhanced mechanical model was developed through a modification of the Gibson-Ashby model,providing an accurate quantitative description of the relationship between porosity and mechanical properties.The results show that the revised mechanical model can accurately describe the relationship between the geometric parameters and properties of metallic lattice structures.Specifically,the designed Kelvin lattice structures exhibit a smooth stress-strain curve with an obvious yield platform,demonstrating isotropic mechanical properties in all the three spatial directions.This enhances their suitability for complex loading conditions.Meanwhile,the microstructure and manufacturing accuracy of the Kelvin lattice structures were observed and analyzed by micro computed tomography.The results show that the fabricated metallic lattice structures achieved precise dimensional control and optimal densification.This study presents the complete process involved in modeling the Kelvin structure,including its conceptualization,manufacturing,implementation,and ultimately,disposal.
基金financially supported by the Grant GO995/48-1 to S.N.G.from the National Priority Program SPP2416″Code-Chi-Chitin,chitosan and chitooligosaccharides and their interaction with proteins of the extracellular matrix and cellular signaling”of the German Science Foundation(DFG).
文摘Scorpions are distributed almost all over the world and inhabit rainforests,deserts,mountains,and littoral zones.Their multifunctional chelae play a key role in their biology.The chela is the pincer that has originated from the last two segments of the pedipalp.Many previous studies have focused on the morphology of the chela and the overall pincer force.The knowledge about the material properties of scorpion chelae remains rather poor.In particular,little is known about the spines located on the grasping edge of the chela.In this study,we use a combination of nanoindentation,micro-computer tomography,confocal laser scanning microscopy,scanning electron microscopy and energy-dispersive X-ray elemental analysis,to examine the mechanical properties,relative density,sclerotization level,microstructure and biomineralization of both the regular cuticle and the spine cuticle of the chela in the scorpion Androctonus bicolor.Our results show that the mechanical property values of the spine cuticle are significantly higher than those of the regular cuticle.This can reduce the risk of damage to the chela,increase the chance of indentation into the prey tissue and is very likely to result from both higher sclerotization level and biomineralization due to the accumulation of zinc.The specialized microstructure of the cuticle could contribute to the enhancement of the stiffness,strength and toughness of the chela.This study aids in better understanding the material structure,composition and properties of the scorpion chela cuticle.
基金financially supported by the Beijing Natural Science Foundation,China (No.JQ21028)the National Natural Science Foundation of China (Nos.52311530070,52278326,and 52004015)+2 种基金the Major National Science and Technology Project for Deep Earth,China (No.2024ZD1003805)the Project from PetroChina RIPED:the Study on the evolution law of Mineral Structure and Rock Mechanical Properties Under Ultra-High Temperature Conditions (No.2022-KFKT-02)the Fundamental Research Funds for the Central Universities of China (No.FRF-IDRY-20-003,Interdisciplinary Research Project for Young Teachers of USTB)。
文摘Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.
基金support from funded project:Key Industrial R&D Projects of Chongqing Technology Innovation and Application Demonstration (cstc2020jscx-dxwtBX0023)。
文摘The iron content is one of the most critical parameters affecting the microstructure and mechanical properties of recycled aluminum alloy.This study aimed to compare the microstructure and tensile properties of alloys with varying iron content to ascertain the optimal iron content for formulating a recycled Al-Si-Mg aluminum alloy.Additionally,the effects of aging temperature and aging time on the microstructure and mechanical properties of recycled aluminum alloy were investigated.With increasing aging temperature and time,both tensile strength and yield strength are improved,while elongation is decreased.Specifically,when subject to a heat treatment consisting of a solution treatment at 535℃for 5 h followed by an aging treatment at 170℃for5.5 h,the newly designed recycled aluminum alloy achieves a tensile strength of 291 MPa and a yield strength of 238 MPa.These findings hold significant implications for the further development and broader application of recycled aluminum alloys.
基金funding support from the National Nature Science Foundation of China(Grant No.42030714).
文摘Calcareous sands are widely distributed on the coral reefs,continental shelf,and seashores between 30north and south latitude and are commonly utilized as filling materials for the construction of artificial islands and infrastructure foundations.In this study,calcareous sands were cemented by enzymatically induced carbonate precipitation(EICP)technique.Drained triaxial tests were conducted on the EICPtreated calcareous sands.Results showed that the specimens with different cementation levels exhibited different responses in mechanical behavior.The differences in the sand fabric after consolidation under a relatively high confining pressure resulted in the untreated specimen exhibiting a higher peak strength compared to the lightly cemented specimen.High confining pressures exhibited a strongly inhibiting effect on dilatancy,which could be counteracted by increasing the cementation level.The EICP-treated specimen could have one or two yield points(smaller-strain and larger-strain yields).For lightly cemented specimens,the smaller-strain yield stress decreased under high confining pressures due to the partial carbonate bonding degradation during consolidation.The stress line of untreated particle breakage(UPB)was a critical boundary to distinguish failure mode in the p′-q space.For the EICP-treated specimens,the yield stress located above or below the UPB stress line indicates the simultaneous or sequential breakage of the carbonate bonds and sand particles,respectively.Accordingly,the EICPtreated specimen exhibited brittle or ductile properties.Failure mode transformation could be triggered by increasing cementation level or confining pressure.
基金financially supported by Shandong Province Aluminum Manufacturing and Application Innovation and Entrepreneurship Community projectShandong Province key Research and Development Plan(2021ZLGX01,2021SFGC1001,2023CXPT024)Shandong Province Youth Taishan project。
文摘Near-eutectic Al-Si alloys are widely used in automotive manufacturing due to their superior wear resistance and high temperature performance.Because of high Si content,the grain refinement of near-eutectic Al-Si alloy has been a problem for many years.In this study,the effect of deep cryogenic treatment(DCT)on the microstructure and mechanical properties of Al-12Si-4Cu-2Ni-Mg alloy with addition of Al-Ti-C-B master alloy was fully investigated.Results show that the average grain size of the alloy is greatly reduced from 0.92 mm to 0.50 mm,and the eutectic Si and Al7Cu4Ni precipitates are spheroidized and refined in Al-12Si-4Cu-2Ni-Mg after DCT for 24 h and aging treatment.Thereby these changes of microstructures result in a significant increment of about 22.5%in elongation and a slight enhancement of about 6.8%in tensile strength.Moreover,the refinement of microstructure also significantly improves the fatigue life of the alloy.
基金financially supported by the National Natural Science Foundation of China(Grant No.51771016)。
文摘In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between 0,1,2,5,and 10,the microstructure transitions from a dendritic structure to a hypo-eutectic structure as the Mo content increases from 0 to 5wt.%.Moreover,as the Mo content increases from 0 to 10wt.%,the distribution of theμ-phase shifts from being individually dispersed to forming aggregates,and its volume fraction rises from 0.5%to 7.9%.Notably,theμ-phase evolves into an eutectic microstructure,which helps in minimizing the segregation of elements.This change is accompanied by a substantial enhancement in mechanical properties;specifically,the compressive yield strength at room temperature increases from 350 MPa to 646 MPa,indicating a significant 85%increase.Similarly,the microhardness increases from 230 HV to 304 HV.Molecular dynamics simulations further reveal that the strengthening mechanism of Ni-42W-10Co-x Mo alloys is Mo-induced solid solution strengthening and precipitation strengthening.
基金Funded by the National Natural Science Foundation of China project(Nos.52108219 and U21A20150)the Lanzhou University of Technology Hongliu Outstanding Young Talent Program,China(No.04-062407)the Research on Quality Control Technology of High-performance Concrete Prepared by Manufactured Sand(No.2020Y21)。
文摘In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)with limestone powder(stone powder)as a mineral admixture on the micro,meso,and macro properties of mortar.First,the applicability of stone powder was examined based on the physical filling and heat of hydration of stone powder-cement.Second,micro-meso testing methods,such as X-ray diffraction,scanning electron microscopy,thermogravimetry-differential scanning calorimetry,and nuclear magnetic resonance,were utilized to reveal the influencing mechanisms of stone powder on the microstructure of the mortar.Furthermore,the effect of stone powder on the compressive strength and gas permeability of the mortar was analyzed.Additionally,the time-dependent variations in the gas permeability and its functional relationship with the mechanical properties were determined.Finally,the correlation between the compressive strength and gas permeability with respect to the pore size of stone powder-doped mortar was established via gray-correlation analysis.The results show that an appropriate amount of stone powder(5%)can effectively improve the particle gradation,decelerate the release of the heat of hydration,increase the amount of hydration products,and improve the pore structure,thereby increasing the compressive strength and reducing the gas permeability coefficient.The gas permeability of stone powder-doped mortar was found to exhibit good time-dependent characteristics as well as a quadratic linear correlation with the compressive strength.The gray-correlation analysis results indicate that air pores exhibit the highest influence on the compressive strength and that the gas permeability coefficient is most significantly affected by large pores.