Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and ca...Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and carbon-intensive, mainly due to the high activation energy required to break the inert C–H bond, low selectivity, and problematic side reactions, including CO_(2)emissions and coke deposition. Electrochemical conversion of methane(ECM) using intermittent renewable energy offers an attractive solution, due to its modular reactor design and operational flexibility across a broad spectrum of temperatures and pressures. This review emphasizes conversion pathways of methane in various reaction systems, highlighting the significance and advantages of ECM in facilitating a sustainable artificial carbon cycle. This work provides a comprehensive overview of conventional methane activation mechanisms and delineates the complete pathways of methane conversion in electrolysis contexts. Based on surface/interface chemistry, this work systematically analyzes proposed reaction pathways and corresponding strategies to enhance ECM efficiency towards various target products, including syngas, hydrocarbons, oxygenates, and advanced carbon materials. The discussion also encompasses opportunities and challenges for the ECM process, including insights into ECM pathways, rational electrocatalyst design, establishment of benchmarking protocols, electrolyte engineering, enhancement of CH4conversion rates, and minimization of CO_(2)emission.展开更多
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner...The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.展开更多
The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorp...The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o...In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.展开更多
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl...Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.展开更多
On 4 March 2024,a new methane-observing satellite,MethaneSAT,was launched atop a SpaceX Falcon 9 rocket and successfully placed in orbit[1].Developed by the New York City,NY,USA-headquartered Environmental Defense Fun...On 4 March 2024,a new methane-observing satellite,MethaneSAT,was launched atop a SpaceX Falcon 9 rocket and successfully placed in orbit[1].Developed by the New York City,NY,USA-headquartered Environmental Defense Fund(EDF)in partnership with the New Zealand Space Agency and funded by multiple philanthropic donors including the Bezos Earth Fund,the spacecraft promises to greatly improve scientists’ability to pinpoint and monitor methane emissions,particularly those related to the oil and gas industry.展开更多
The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3...The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3Ni-xCo/Mg1HAP alloy catalysts with different ratio were synthesized by the coprecipitation method,and the optimum Ni-Co ratio for the DRM reaction was studied.A series of characterization methods revealed that after Co was added,the formation of Ni-Co alloys increased the interactions between metals.However,an excess of Co inhibits the entry of Ni into the lattice of Mg_(1)HAP,resulting in metal accumulation on the surface of the support.In addition,the introduction of Co improves the dispersion of Ni metal,which endows the catalyst with better catalytic activity and stability.Raman spectroscopy of the catalyst after the stability test showed that the addition of Co reduced the proportion of graphitic carbon,which was also the main reason for its improved stability.展开更多
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl...Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.展开更多
The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsid...The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments.展开更多
Methane(CH_(4))and carbon dioxide(CO_(2))are primary components of coal seam gas(CSG).Understanding their adsorption-desorption hysteresis characteristics,along with the fundamental mechanism,is crucial for CSG exploi...Methane(CH_(4))and carbon dioxide(CO_(2))are primary components of coal seam gas(CSG).Understanding their adsorption-desorption hysteresis characteristics,along with the fundamental mechanism,is crucial for CSG exploitation and related hazards mitigation.This research focused on the representative Bulli coal seam in the Sydney Basin,Australia.Through the purpose-built indirect gravimetric high-pressure isothermal adsorption-desorption hysteresis experiment,a novel Langmuir-based desorption model,incorporating hysteresis effect and residual gas,was proposed.Quantitative characterization of the adsorption-desorption hysteresis degrees of CO_(2)and CH_(4)i n coal particles of various sizes and inΦ50mm 100 mm intact coal samples were achieved using the improved hysteresis index(IHI).The experimental findings validated that the proposed desorption model accurately describes the desorption behavior of CO_(2)and CH_(4)in coal(R^(2)>0.99).Based on the adsorption-desorption properties of inkbottle-shaped micropores and pore deformation caused by gas adsorption-induced coal expansion,the occurrence mechanism of adsorption–desorption hysteresis and the fundamental reasons for the presence of residual gas were elucidated.Furthermore,the study explored the impact of CO_(2)and CH_(4)adsorption-desorption hysteresis effects on coal and gas outbursts,suggesting that coal seams rich in CO_(2)do not have a higher propensity for outbursts than those rich in CH_(4).展开更多
The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex...The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex regions were selected,and the main results obtained by using a variety of research tools,such as physical tests,theoretical analyses,and numerical simulations,are as follows:22.4–62.5 nm is the joint segment of pore volume,and 26.7–100.7 nm is the joint segment of pore specific surface area.In the dynamic gas production process of tectonic coal pore structure,the adsorption method of methane molecules is“solid–liquid adsorption is the mainstay,and solid–gas adsorption coexists”.Methane stored in micropores with a pore size smaller than the jointed range is defined as solid-state pores.Pores within the jointed range,which transition from micropore filling to surface adsorption,are defined as gaseous pores.Pores outside the jointed range,where solid–liquid adsorption occurs,are defined as liquid pores.The evolution of pore structure affects the methane adsorption mode,which provides basic theoretical guidance for the development of coal seam resources.展开更多
Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As thi...Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As this field is still in its early developmental stages,there is a crucial necessity to explore the synergistic mechanism between plasma and catalysts.The optimization of catalysts is imperative to improve their selectivity and conversion rates for desired products in a plasma environment.Additionally,delving into microscale investigations of plasma characteristics,such as electron temperature and the density of energetic species,is essential to enhance the stability and activity of catalysts.This review examines recent advancements in various methane conversion techniques,encompassing Dry Reforming of Methane,Steam Methane Reforming,Pa rtial Oxidation of Metha ne,and Methane Decomposition utilizing non-thermal dielectric barrier discharge(DBD)plasma.The aim is to gain a deeper understanding of plasma-catalyst interactions and to refine catalyst selection strategies for maximizing the production of desired products such as syngas,oxygenates,or higher hydrocarbons.The review delves into the catalytic mechanisms that delineate the synergistic effects between DBD plasma and catalyst in each technology,shedding light on the role of diverse catalytic properties in activating methane molecules-a pivotal step in hybrid plasma-catalytic reactions.Various approaches employed by researchers in exploring suitable catalysts and optimal reaction conditions to bolster CH_(4) conversion rates and selectivity using DBD plasma are discussed.Additionally,the review identifies gaps in the realm of plasma catalysis,underscoring the necessity for further research to fully understand the underlying principles of plasma and catalyst which are not trivial to uncover.展开更多
Clean and O-(2√2×√2)R45°Cu(100) surfaces were prepared to study the impact of surface oxygen on the activation of methane dissociation.Auger electron spectroscopy,low energy electron diffraction,infrared r...Clean and O-(2√2×√2)R45°Cu(100) surfaces were prepared to study the impact of surface oxygen on the activation of methane dissociation.Auger electron spectroscopy,low energy electron diffraction,infrared reflection absorption spectroscopy,scanning tunneling microscope,and a quadrupole mass-spectrometer for temperature programmed desorption were used to explore the behavior of CH_(4) on the two surfaces.The dissociative adsorption of CH_(4) was observed on oxygen-pre-covered Cu(100) but not on the clean surface indicating surface oxygen promotes the dissociation of the C-H bond.This study can be a reference for the conversion of methane into other high-value-added products with high efficiency and low energy consumption.展开更多
Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic cond...Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants.展开更多
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz...This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.展开更多
Paddy fields are considered a major source of methane(CH_4)emissions.Aerobic irrigation methods have proven to be efficacious in mitigating CH_4 emissions in paddy cultivation.The promising role of compound microbial ...Paddy fields are considered a major source of methane(CH_4)emissions.Aerobic irrigation methods have proven to be efficacious in mitigating CH_4 emissions in paddy cultivation.The promising role of compound microbial agents in refining the rhizospheric ecosystem suggests their potential as novel agents in reducing CH_4 emissions from paddy fields.To explore a new method of using compound microbial agents to reduce CH_4 emissions,we conducted pot and field experiments over the period of 2022-2023.We measured CH_4 flux,the redox potential(Eh)of the soil,the concentration of dissolved oxygen(DO)in the floodwater,and the gene abundance of both methanogens(mcr A)and methanotrophs(pmo A).The results showed that the application of the compound microbial agent led to a significant increase in the DO levels within the floodwater and an increase of 9.26%to 35.01%in the Eh of the tillage soil.Furthermore,the abundance of pmo A increased by 31.20%,while the mcr A/pmo A ratio decreased by 25.96%at the maximum tillering stage.Applying 45-75 kg/hm^(2) of the compound microbial agent before transplanting resulted in a reduction of cumulative CH_4 emissions from paddy fields by 17.49%in single-cropped rice and 43.54%to 50.27%in double-cropped late rice during the tillering stage.Correlation analysis indicated that CH_4 flux was significantly negatively correlated with pmo A gene abundance and soil Eh,and positively related to the mcr A/pmo A ratio.Additionally,soil Eh was significantly positively correlated with pmo A gene abundance,suggesting that paddy soil Eh indirectly affected CH_4 flux by influencing the pmo A gene abundance.In conclusion,the pre-planting application of the compound microbial agent at a rate of 45-75 kg/hm^(2) can enhance the Eh in the rhizosphere and increase the abundance of the pmo A gene,thereby reducing CH_4 emissions from paddy fields during the tillering stage of rice growth.展开更多
The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,...The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,i.e.,selective and efficient conversion of methane from CBG.Methane activation,known as the“holy grail”,poses a challenge to the design and development of catalysts.The structural complexity of the active metal on the carrier is of particular concern.In this work,we have studied the nucleation growth of small Co clusters(up to Co_(6))on the surface of CeO_(2)(110)using density functional theory,from which a stable loaded Co/CeO_(2)(110)structure was selected to investigate the methane activation mechanism.Despite the relatively small size of the selected Co clusters,the obtained Co_(x)/CeO_(2)(110)exhibits interesting properties.The optimized Co_(5)/CeO_(2)(110)structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure,adsorption energy and binding energy.The energy barriers for the stepwise dissociation of methane to form CH3^(*),CH2^(*),CH^(*),and C^(*)radical fragments are 0.44,0.55,0.31,and 1.20 eV,respectively,indicating that CH^(*)dissociative dehydrogenation is the rate-determining step for the system under investigation here.This fundamental study of metal-support interactions based on Co growth on the CeO_(2)(110)surface contributes to the understanding of the essence of Co/CeO_(2) catalysts with promising catalytic behavior.It provides theoretical guidance for better designing the optimal Co/CeO_(2) catalyst for tailored catalytic reactions.展开更多
Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some prod...Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some production data analysis techniques have been adapted from conventional oil and gas wells,there remains a gap in the understanding of pore pressure generation and evolution,particularly in wells subjected to large-scale hydraulic fracturing.To address this gap,a novel technique called excess pore pressure analysis(EPPA)has been introduced to the coal seam gas industry for the first time to our knowledge,which employs dual-phase flow principles based on consolidation theory.This technique focuses on the generation and dissipation for excess pore-water pressure(EPWP)and excess pore-gas pressure(EPGP)in stimulated deep coal reservoirs.Equations have been developed respectively and numerical solutions have been provided using the finite element method(FEM).Application of this model to a representative field example reveals that excess pore pressure arises from rapid loading,with overburden weight transferred under undrained condition due to intense hydraulic fracturing,which significantly redistributes the weight-bearing role from the solid coal structure to the injected fluid and liberated gas within artificial pores over a brief timespan.Furthermore,field application indicates that the dissipation of EPWP and EPGP can be actually considered as the process of well production,where methane and water are extracted from deep coalbed methane wells,leading to consolidation for the artificial reservoirs.Moreover,history matching results demonstrate that the excess-pressure model established in this study provides a better explanation for the declining trends observed in both gas and water production curves,compared to conventional practices in coalbed methane reservoir engineering and petroleum engineering.This research not only enhances the understanding of DCBM reservoir behavior but also offers insights applicable to production analysis in other unconventional resources reliant on hydraulic fracturing.展开更多
基金National Key R&D Program of China (2023YFA1508001 and 2023YFA1508002)National Natural Science Foundation of China (22272120 and U2202251)+1 种基金Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ120)Research Foundation of Marine Science and Technology Collaborative Innovation Center of Hainan University (XTCX2022HYB01)。
文摘Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and carbon-intensive, mainly due to the high activation energy required to break the inert C–H bond, low selectivity, and problematic side reactions, including CO_(2)emissions and coke deposition. Electrochemical conversion of methane(ECM) using intermittent renewable energy offers an attractive solution, due to its modular reactor design and operational flexibility across a broad spectrum of temperatures and pressures. This review emphasizes conversion pathways of methane in various reaction systems, highlighting the significance and advantages of ECM in facilitating a sustainable artificial carbon cycle. This work provides a comprehensive overview of conventional methane activation mechanisms and delineates the complete pathways of methane conversion in electrolysis contexts. Based on surface/interface chemistry, this work systematically analyzes proposed reaction pathways and corresponding strategies to enhance ECM efficiency towards various target products, including syngas, hydrocarbons, oxygenates, and advanced carbon materials. The discussion also encompasses opportunities and challenges for the ECM process, including insights into ECM pathways, rational electrocatalyst design, establishment of benchmarking protocols, electrolyte engineering, enhancement of CH4conversion rates, and minimization of CO_(2)emission.
文摘The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.
基金financially supported by the National Natural Science Foundation of China (51904319)the Fundamental Research Funds for the Central Universities (21CX06029A)。
文摘The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.
文摘In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.
基金funded by the National Key Research and Development Program of China(No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars(No.51925404)+2 种基金the National Natural Science Foundation of China(No.12372373)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2909)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ134)。
文摘Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.
文摘On 4 March 2024,a new methane-observing satellite,MethaneSAT,was launched atop a SpaceX Falcon 9 rocket and successfully placed in orbit[1].Developed by the New York City,NY,USA-headquartered Environmental Defense Fund(EDF)in partnership with the New Zealand Space Agency and funded by multiple philanthropic donors including the Bezos Earth Fund,the spacecraft promises to greatly improve scientists’ability to pinpoint and monitor methane emissions,particularly those related to the oil and gas industry.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFDA297007)the National Natural Science Foundation of China(22078074)the Special Funding for‘Guangxi Bagui Scholars’.
文摘The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3Ni-xCo/Mg1HAP alloy catalysts with different ratio were synthesized by the coprecipitation method,and the optimum Ni-Co ratio for the DRM reaction was studied.A series of characterization methods revealed that after Co was added,the formation of Ni-Co alloys increased the interactions between metals.However,an excess of Co inhibits the entry of Ni into the lattice of Mg_(1)HAP,resulting in metal accumulation on the surface of the support.In addition,the introduction of Co improves the dispersion of Ni metal,which endows the catalyst with better catalytic activity and stability.Raman spectroscopy of the catalyst after the stability test showed that the addition of Co reduced the proportion of graphitic carbon,which was also the main reason for its improved stability.
基金supported by the National Natural Science Foundation of China(21978092).
文摘Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.
基金the National Natural Science Foun-dation of China(Grant Nos.52376083 and 51991362).
文摘The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments.
基金provided by the China Scholarship Council(No.202006430006)and the University of Wollongongsupported by the ACARP Projects(Nos.C28006 and C35015)support from the Coal Services Health and Safety Trust(No.20661)。
文摘Methane(CH_(4))and carbon dioxide(CO_(2))are primary components of coal seam gas(CSG).Understanding their adsorption-desorption hysteresis characteristics,along with the fundamental mechanism,is crucial for CSG exploitation and related hazards mitigation.This research focused on the representative Bulli coal seam in the Sydney Basin,Australia.Through the purpose-built indirect gravimetric high-pressure isothermal adsorption-desorption hysteresis experiment,a novel Langmuir-based desorption model,incorporating hysteresis effect and residual gas,was proposed.Quantitative characterization of the adsorption-desorption hysteresis degrees of CO_(2)and CH_(4)i n coal particles of various sizes and inΦ50mm 100 mm intact coal samples were achieved using the improved hysteresis index(IHI).The experimental findings validated that the proposed desorption model accurately describes the desorption behavior of CO_(2)and CH_(4)in coal(R^(2)>0.99).Based on the adsorption-desorption properties of inkbottle-shaped micropores and pore deformation caused by gas adsorption-induced coal expansion,the occurrence mechanism of adsorption–desorption hysteresis and the fundamental reasons for the presence of residual gas were elucidated.Furthermore,the study explored the impact of CO_(2)and CH_(4)adsorption-desorption hysteresis effects on coal and gas outbursts,suggesting that coal seams rich in CO_(2)do not have a higher propensity for outbursts than those rich in CH_(4).
基金supported by the National Natural Science Foundation of China(52164015)the Technology Funding Projects of Guizhou Province([2022]231).
文摘The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex regions were selected,and the main results obtained by using a variety of research tools,such as physical tests,theoretical analyses,and numerical simulations,are as follows:22.4–62.5 nm is the joint segment of pore volume,and 26.7–100.7 nm is the joint segment of pore specific surface area.In the dynamic gas production process of tectonic coal pore structure,the adsorption method of methane molecules is“solid–liquid adsorption is the mainstay,and solid–gas adsorption coexists”.Methane stored in micropores with a pore size smaller than the jointed range is defined as solid-state pores.Pores within the jointed range,which transition from micropore filling to surface adsorption,are defined as gaseous pores.Pores outside the jointed range,where solid–liquid adsorption occurs,are defined as liquid pores.The evolution of pore structure affects the methane adsorption mode,which provides basic theoretical guidance for the development of coal seam resources.
文摘Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As this field is still in its early developmental stages,there is a crucial necessity to explore the synergistic mechanism between plasma and catalysts.The optimization of catalysts is imperative to improve their selectivity and conversion rates for desired products in a plasma environment.Additionally,delving into microscale investigations of plasma characteristics,such as electron temperature and the density of energetic species,is essential to enhance the stability and activity of catalysts.This review examines recent advancements in various methane conversion techniques,encompassing Dry Reforming of Methane,Steam Methane Reforming,Pa rtial Oxidation of Metha ne,and Methane Decomposition utilizing non-thermal dielectric barrier discharge(DBD)plasma.The aim is to gain a deeper understanding of plasma-catalyst interactions and to refine catalyst selection strategies for maximizing the production of desired products such as syngas,oxygenates,or higher hydrocarbons.The review delves into the catalytic mechanisms that delineate the synergistic effects between DBD plasma and catalyst in each technology,shedding light on the role of diverse catalytic properties in activating methane molecules-a pivotal step in hybrid plasma-catalytic reactions.Various approaches employed by researchers in exploring suitable catalysts and optimal reaction conditions to bolster CH_(4) conversion rates and selectivity using DBD plasma are discussed.Additionally,the review identifies gaps in the realm of plasma catalysis,underscoring the necessity for further research to fully understand the underlying principles of plasma and catalyst which are not trivial to uncover.
基金This work is supported by the National Key R&D Program of China(No.2022YFB4101201)the Na-tional Natural Science Foundation of China(No.21972162).
文摘Clean and O-(2√2×√2)R45°Cu(100) surfaces were prepared to study the impact of surface oxygen on the activation of methane dissociation.Auger electron spectroscopy,low energy electron diffraction,infrared reflection absorption spectroscopy,scanning tunneling microscope,and a quadrupole mass-spectrometer for temperature programmed desorption were used to explore the behavior of CH_(4) on the two surfaces.The dissociative adsorption of CH_(4) was observed on oxygen-pre-covered Cu(100) but not on the clean surface indicating surface oxygen promotes the dissociation of the C-H bond.This study can be a reference for the conversion of methane into other high-value-added products with high efficiency and low energy consumption.
基金supported by the Improvement of Green Rice Plant Type Using Genetic Information Program, Rural Development Administration, Korea (Grant No. PJ01699202)
文摘Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants.
基金This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393the funding from the National Natural Science Foundation of China (No. 52177149)
文摘This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.
基金supported by the Zhejiang‘Ten Thousand Talents’Plan Science and Technology Innovation Leading Talent Project,China (Grant No.2020R52035)the National Rice Industry Technology System of China (Grant No.CARS-01-31)the Agricultural Science and Technology Innovation Program,China (Grant No.CAAS-ZDRW202001)。
文摘Paddy fields are considered a major source of methane(CH_4)emissions.Aerobic irrigation methods have proven to be efficacious in mitigating CH_4 emissions in paddy cultivation.The promising role of compound microbial agents in refining the rhizospheric ecosystem suggests their potential as novel agents in reducing CH_4 emissions from paddy fields.To explore a new method of using compound microbial agents to reduce CH_4 emissions,we conducted pot and field experiments over the period of 2022-2023.We measured CH_4 flux,the redox potential(Eh)of the soil,the concentration of dissolved oxygen(DO)in the floodwater,and the gene abundance of both methanogens(mcr A)and methanotrophs(pmo A).The results showed that the application of the compound microbial agent led to a significant increase in the DO levels within the floodwater and an increase of 9.26%to 35.01%in the Eh of the tillage soil.Furthermore,the abundance of pmo A increased by 31.20%,while the mcr A/pmo A ratio decreased by 25.96%at the maximum tillering stage.Applying 45-75 kg/hm^(2) of the compound microbial agent before transplanting resulted in a reduction of cumulative CH_4 emissions from paddy fields by 17.49%in single-cropped rice and 43.54%to 50.27%in double-cropped late rice during the tillering stage.Correlation analysis indicated that CH_4 flux was significantly negatively correlated with pmo A gene abundance and soil Eh,and positively related to the mcr A/pmo A ratio.Additionally,soil Eh was significantly positively correlated with pmo A gene abundance,suggesting that paddy soil Eh indirectly affected CH_4 flux by influencing the pmo A gene abundance.In conclusion,the pre-planting application of the compound microbial agent at a rate of 45-75 kg/hm^(2) can enhance the Eh in the rhizosphere and increase the abundance of the pmo A gene,thereby reducing CH_4 emissions from paddy fields during the tillering stage of rice growth.
基金National Natural Science Foundation of China(52174279)Analysis and Testing Foundation of Kunming University of Science and Technology(2022M20202202138)Yunnan Fundamental Research Projects(202301AU070027).
文摘The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,i.e.,selective and efficient conversion of methane from CBG.Methane activation,known as the“holy grail”,poses a challenge to the design and development of catalysts.The structural complexity of the active metal on the carrier is of particular concern.In this work,we have studied the nucleation growth of small Co clusters(up to Co_(6))on the surface of CeO_(2)(110)using density functional theory,from which a stable loaded Co/CeO_(2)(110)structure was selected to investigate the methane activation mechanism.Despite the relatively small size of the selected Co clusters,the obtained Co_(x)/CeO_(2)(110)exhibits interesting properties.The optimized Co_(5)/CeO_(2)(110)structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure,adsorption energy and binding energy.The energy barriers for the stepwise dissociation of methane to form CH3^(*),CH2^(*),CH^(*),and C^(*)radical fragments are 0.44,0.55,0.31,and 1.20 eV,respectively,indicating that CH^(*)dissociative dehydrogenation is the rate-determining step for the system under investigation here.This fundamental study of metal-support interactions based on Co growth on the CeO_(2)(110)surface contributes to the understanding of the essence of Co/CeO_(2) catalysts with promising catalytic behavior.It provides theoretical guidance for better designing the optimal Co/CeO_(2) catalyst for tailored catalytic reactions.
基金supported by the National Natural Science Foundation of China(Nos.42272195 and 42130802)supported by the Key Applied Science and Technology Project of PetroChina(No.2023ZZ18)the Major Science and Technology Project of Changqing Oilfield(No.2023DZZ01).
文摘Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some production data analysis techniques have been adapted from conventional oil and gas wells,there remains a gap in the understanding of pore pressure generation and evolution,particularly in wells subjected to large-scale hydraulic fracturing.To address this gap,a novel technique called excess pore pressure analysis(EPPA)has been introduced to the coal seam gas industry for the first time to our knowledge,which employs dual-phase flow principles based on consolidation theory.This technique focuses on the generation and dissipation for excess pore-water pressure(EPWP)and excess pore-gas pressure(EPGP)in stimulated deep coal reservoirs.Equations have been developed respectively and numerical solutions have been provided using the finite element method(FEM).Application of this model to a representative field example reveals that excess pore pressure arises from rapid loading,with overburden weight transferred under undrained condition due to intense hydraulic fracturing,which significantly redistributes the weight-bearing role from the solid coal structure to the injected fluid and liberated gas within artificial pores over a brief timespan.Furthermore,field application indicates that the dissipation of EPWP and EPGP can be actually considered as the process of well production,where methane and water are extracted from deep coalbed methane wells,leading to consolidation for the artificial reservoirs.Moreover,history matching results demonstrate that the excess-pressure model established in this study provides a better explanation for the declining trends observed in both gas and water production curves,compared to conventional practices in coalbed methane reservoir engineering and petroleum engineering.This research not only enhances the understanding of DCBM reservoir behavior but also offers insights applicable to production analysis in other unconventional resources reliant on hydraulic fracturing.