期刊文献+
共找到208,273篇文章
< 1 2 250 >
每页显示 20 50 100
Spray Atomized and Codeposited Al-Li Based Metal-matrix Composites Processing and Properties 被引量:1
1
作者 E. Raskin S. Nayim M.Polak and J.Baram(Materials Engineering Dept., Ben-Gurion University of the Negev, Beer-Sheva, Israel )A.N.Sembira(Nuclear Research Center, Negev, Beer-Sheva, Israel)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期329-339,共11页
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh... In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions. 展开更多
关键词 LI Al Spray Atomized and Codeposited Al-Li Based metal-matrix composites Processing and Properties
在线阅读 下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅱ:Reinforcement Injection and Deposition 被引量:1
2
作者 V. Erukhimovitch and J.Baram (Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第3期165-170,共6页
The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and c... The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and codeposited composite material is analyzed. The reinforcement particles injection velocity has to be limited between an upper and a lower critical values. in order to ensure entrapment into the matrix droplets in flight. The thermal history of the injected droplets during the deposition stage is calculated with the assumption that the in-flight solidifying droplets reach the substrate while containing still at least 20% liquid volume fraction, in order to avoid porosity of the deposited material. The substrate to pouring-tube orifice distance where that condition is achieved depends strongly on the atomization pressure and the convective heat transfer coefficient of the substrate. It is demonstrated that 'tailoring' the microstructures and the reinforcement volume percent in the deposited material is feasible. The critical process parameters : the atomization pressure, the melt flow rate. the substrate to pouring-tube orifice distance, the reinforcement particles injection location and rate can all be adequately chosen in order to obtain any desired microstructure, grain size, reinforcement volume percent, with the additional benefit, if wanted, of rapid solidification processing 展开更多
关键词 Analysis of Solidification in Spray Atomized and Codeposited metal-matrix composites Part Reinforcement Injection and Deposition Vc
在线阅读 下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅰ: Atomization
3
作者 V.Erukhimovitch and J.Baram(Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第2期79-90,共12页
Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the de... Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the deposited material. Atomization gas velocities, atomized droplets velocities, convective heat transfer coefficients, thermal histories of the solidifying droplets, freezing rates, fraction solid evolution and solid-liquid interface propagation velocity are calculated. The influence, on the deposit microstructural features, of process parameters like the atomization gas pressure, the pouring tube orifice diameter, the geometrical features of the atomization device,the potency of , pre-existing or injected as reinforcement, nucleation sites, the wetting angle between the liquid melt bnd impurity particles acting as preferred nucleation sites, the in-flight distance of the solidifying droplets in the atomization chamber, i5 evaluated. As a result of the evaluation, appropriate choice of the adjustable process parameters for the production of powders and/or deposits with desired grain size and microstructure, can be made. 展开更多
关键词 Co FIGURE ATOMIZATION Analysis of Solidification in Spray Atomized and Codeposited metal-matrix composites Part
在线阅读 下载PDF
PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES 被引量:13
4
作者 魏悦广 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期45-58,共14页
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly u... The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted. 展开更多
关键词 size effect strain gradient plasticity the particle-reinforced metal-matrix composite
在线阅读 下载PDF
ANALYSIS OF ELASTOPLASTIC DEFORMATION IN METAL-MATRIX COMPOSITES WITH PARTICULATE REINFORCEMENTS
5
作者 方岱宁 周储伟 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第2期153-160,共8页
In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conju... In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conjunction with continuum plasticity theory, various periodic arrays of particles are assumed in a three-dimensional finite element simulation. The geometrical effects of particle volume fraction, shape, aspect ratio, array and distribution, as well as non-circular particle orientation on the overall elastoplastic stress-strain behavior are examined in view to design optimum microstructures of the composites. 展开更多
关键词 elastoplastic deformation metal-matrix composite PARTICLES finite element analysis
在线阅读 下载PDF
Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing:A review 被引量:4
6
作者 Hamed Mirzadeh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1278-1296,共19页
This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including si... This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs). 展开更多
关键词 surface composites magnesium alloys friction stir processing severe plastic deformation thermomechanical processing
在线阅读 下载PDF
CONSTITUTIVE RELATION OF DISCONTINUOUS REINFORCED METAL-MATRIX COMPOSITES
7
作者 季葆华 王自强 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第2期160-171,共12页
A micromechanical model is developed to simulate the mechanical behaviors of discontinuous reinforced composites. The analysis for a representative unit cell is based on the assumption of a periodic array of aligned r... A micromechanical model is developed to simulate the mechanical behaviors of discontinuous reinforced composites. The analysis for a representative unit cell is based on the assumption of a periodic array of aligned reinforcements. The minimum energy principle is used to determine the unknown coefficients of the displacement field of the unit cell. The constitutive behavior of composites is studied to obtain the relationship between the main variables of matrix and reinforcements. It is concluded that the how strength of composites is strongly influenced by volume fraction, aspect ratio of reinforcement, and the strain hardening exponent of matrix. An analytical constitutive relation of composites is obtained. The predicted results are in agreement with the existing experimental and numerical results. 展开更多
关键词 composites constitutive equation PLASTIC
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
8
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
2D Plain and 3D Needle-punched C/SiC Composites:Low-velocity Impact Damage Behavior and Failure Mechanism
9
作者 LUAN Xingang HE Dianwei +1 位作者 TU Jianyong CHENG Laifei 《无机材料学报》 北大核心 2025年第2期205-214,I0004,共11页
Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage a... Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage and multiple impact damage of C/SiC composites is limited.To investigate the in-plane impact damage behavior of C/SiC composites,a drop-weight impact test method was developed for strip samples,and these results were subsequently compared with those of C/SiC composite plates.Results show that the in-plane impact behavior of C/SiC strip samples is similar to that of C/SiC composite plates.Variation of the impact load with displacement is characterized by three stages:a nearly linear stage,a severe load drop stage,and a rebound stage where displacement occurs after the impact energy exceeds its peak value.Impact damage behavior under single and multiple impacts on 2D plain and 3D needled C/SiC composites was investigated at different impact energies and durations.Crack propagation in C/SiC composites was studied by computerized tomography(CT)technique.In the 2D plain C/SiC composite,load propagation between layers is hindered during impact,leading to delamination and 90°fiber brittle fracture.The crack length perpendicular to the impact direction increases with impact energy increases,resulting in more serious 0°fiber fracture and a larger area of fiber loss.In the 3D needled C/SiC composite,load propagates between the layers during impact through the connection of needled fibers.The fibers continue to provide substantial structural support,with notable instances of fiber pull-off and debonding.Consequently,the impact resistance is superior to that of 2D plain C/SiC composite.When the 3D needled C/SiC composite undergoes two successive impacts of 1.5 J,the energy absorption efficiency of the second impact is significantly lower,accompanied by a smaller impact displacement.Moreover,the total energy absorption efficiency of these two impacts of 1.5 J is lower than that of a single 3.0 J impact. 展开更多
关键词 ceramic-matrix composite FRACTURE low-velocity impact computerized tomography analysis
在线阅读 下载PDF
B2-CuZr reinforced amorphous alloy matrix composites:A review
10
作者 Wei Guo Run-hua Huang +5 位作者 Zhen Zhang Mi Zhao Jin-cheng Wang Yan-qiang Qiao Shu-lin Lü Shu-sen Wu 《China Foundry》 2025年第1期1-11,共11页
B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites... B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system. 展开更多
关键词 amorphous alloy matrix composite B2-CuZr phase PLASTICITY microstructure tailoring
在线阅读 下载PDF
Shape Memory Alloy-Reinforced Metal-Matrix Composites:A Review 被引量:5
11
作者 D.R.Ni Z.Y.Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第5期739-761,共23页
Metal-matrix composites reinforced with shape memory alloys (SMA, including long fiber, short fiber, and particle) are "intelligent materials" with many special physical and mechanical properties, such as high dam... Metal-matrix composites reinforced with shape memory alloys (SMA, including long fiber, short fiber, and particle) are "intelligent materials" with many special physical and mechanical properties, such as high damping property, high tensile strength, and fatigue resistance. In this review article, the fabrication method, microstructure, interface reaction, modeling, and physical and mechanical properties of the composites are addressed. Particular emphasis has been given to (a) fabrication and microstructure of aluminum matrix composites reinforced with SMAs, and (b) shape memory effect on the physical and mechanical properties of the composites. While the bulk of the information is related to aluminum matrix composites, important results are now available for other metal-matrix composites. 展开更多
关键词 metal-matrix composites Shape memory alloy Fabrication method MICROSTRUCTURE Interface reaction Mechanical properties
原文传递
Ti_(3)C_(2)T_(x) MXene/carbon composites for advanced supercapacitors:Synthesis,progress,and perspectives 被引量:3
12
作者 Yanqing Cai Xinggang Chen +4 位作者 Ying Xu Yalin Zhang Huijun Liu Hongjuan Zhang Jing Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期113-142,共30页
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi... MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs. 展开更多
关键词 electrochemical performance MXene/carbon composites SUPERCAPACITORS
在线阅读 下载PDF
A Review on the Advancement of Renewable Natural Fiber Hybrid Composites: Prospects, Challenges, and Industrial Applications 被引量:2
13
作者 Mohammed Mohammed Jawad K.Oleiwi +5 位作者 Aeshah M.Mohammed Anwar Ja’afar Mohamad Jawad Azlin F.Osman Tijjani Adam Bashir O.Betar Subash C.B.Gopinath 《Journal of Renewable Materials》 EI CAS 2024年第7期1237-1290,共54页
Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptabilit... Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries. 展开更多
关键词 Renewable naturalfiber hybrid composites SUSTAINABILITY NANOMATERIAL greener material
在线阅读 下载PDF
The interface structure and property of magnesium matrix composites:A review 被引量:1
14
作者 Hongwei Xiong Lidong Gu +7 位作者 Jingya Wang Liping Zhou Tao Ying Shiwei Wang Haitao Zhou Jianbo Li Yang Gao Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2595-2623,共29页
Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts ... Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts as a“bridge”between the matrix and reinforcement,playing crucial roles in critical processes such as load transfer,failure behavior,and carrier transport.A deep understanding of the interfacial structures,properties,and effects holds paramount significance in the study of composites.This paper presents a comprehensive review of prior researches related to the interface of Mg matrix composites.Firstly,the different interfacial structures and interaction mechanisms encompassing mechanical,physical,and chemical bonding are introduced.Subsequently,the interfacial mechanical properties and their influence on the overall properties are discussed.Finally,the paper addresses diverse interface modification methods including matrix alloying and reinforcement surface treatment. 展开更多
关键词 Mg matrix composites INTERFACE interfacial strength interfacial modification
在线阅读 下载PDF
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method 被引量:1
15
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
在线阅读 下载PDF
Strength and elastic modulus enhancement in Mg-Li-Al matrix composites reinforced by ex situ TiB2 particles via stir casting 被引量:1
16
作者 Jiawei Sun Dehua Ding +4 位作者 Wencai Liu Guohua Wu Hongjie Liu Guangling Wei Hezhou Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3574-3588,共15页
A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib... A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value. 展开更多
关键词 Mg-Li composite Stir casting Elastic modulus Microstructure Mechanical properties
在线阅读 下载PDF
Valorization of Tree Bark-Derived Suberin in Applications for the Bio-Based Composites Industry–A Recent Review 被引量:1
17
作者 Aleksandra Jeżo 《Journal of Renewable Materials》 EI CAS 2024年第6期1029-1042,共14页
Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also... Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also contains suberin,which plays a major role in protecting the tree from environmental conditions.Suberin is a natural aliphatic-aromatic cross-linked polyester present in the cell walls of both normal and damaged external tissues,the main component of which are long-chain aliphatic acids.Its main role as a plant ingredient is to protect against microbiological factors and water loss.One of the most important suberin monomers are suberin fatty acids,known for their hydrophobic and barrier properties.Therefore,due to the diverse chemical composition of suberin,it is an attractive alternative to hydrocarbon-based materials.Although its potential is recognized,it is not widely used in biocomposites technology,including wood-based composites and the polymer industry.The article will discuss the current knowledge about the potential of suberin and its components in biocomposites technology,which will include surface finishes,composite adhesives and polymer blends. 展开更多
关键词 SUBERIN suberinic acids wood composites BIOcomposites biopolyester
在线阅读 下载PDF
Controllable thermal rectification design for buildings based on phase change composites 被引量:1
18
作者 Hengbin Ding Xiaoshi Li +2 位作者 Tianhang Li Xiaoyong Zhao He Tian 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期40-45,共6页
Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device... Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements. 展开更多
关键词 phase change composites controllable thermal rectification building applications
在线阅读 下载PDF
Mechanical behaviors of backfill-rock composites: Physical shear test and back-analysis 被引量:1
19
作者 Jie Xin Quan Jiang +5 位作者 Fengqiang Gong Lang Liu Chang Liu Qiang Liu Yao Yang Pengfei Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期807-827,共21页
The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backf... The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering. 展开更多
关键词 Physical simulation Backfill-rock composites Shear failure CRACKING Shear constitutive model
在线阅读 下载PDF
Ultraviolet‑Irradiated All‑Organic Nanocomposites with Polymer Dots for High‑Temperature Capacitive Energy Storage 被引量:1
20
作者 Jiale Ding Yao Zhou +5 位作者 Wenhan Xu Fan Yang Danying Zhao Yunhe Zhang Zhenhua Jiang Qing Wang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期398-406,共9页
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee... Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites. 展开更多
关键词 High-temperature energy storage Polymer dots Ultraviolet irradiation All-organic composite dielectrics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部