期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Blown Film Extrusion Process for Polybags: Technical Overview and Applications
1
作者 Sunil Badgujar Sudeep Asthana +6 位作者 Ravindra Kanawade Krunal Suthar Ankit Solanki Karuppiah Nagaraj Mahaveer Singh Bilkhu Harekrushna Sutar Swapna Rekha Panda 《Advances in Chemical Engineering and Science》 CAS 2024年第4期188-201,共14页
The choice of extrusion process is a decisive factor that affects the finished product quality for polybag manufacturing. One important component influencing the quality of the finished product is the selection of the... The choice of extrusion process is a decisive factor that affects the finished product quality for polybag manufacturing. One important component influencing the quality of the finished product is the selection of the extrusion technique. Two popular procedures that vary in the kind of dye used and the final product’s texture are cast film and blown film. In the horizontal extrusion moulding method known as “cast film”, heated resin is injected into a flat dye and allowed to cool on chill rolls. The film produced is clear, lightweight, and appropriate for lamination;its thickness varies based on the winding speed and the film is slower to crystallize and has less clarity but more durability because the resin molecules have reoriented, facing limitation of high wastage generation. This study primarily focused on the preparation of polybag film using the blown film extrusion process, utilizing high-quality polymer resins such as polyester polyethylene (PP) and linear low-density polyethylene (LLDPE) to minimize waste generation. The novelty of the process was reflected in minimising the waste generation. The control parameters considered in this study are temperature, pressure, and air intake volume. We investigated the influence of these critical process control parameters on the gauge thickness, optical properties, and mechanical strength of the polybag film produced through blown film extrusion. Additionally, we replicated the blown film process using simulation software developed at Pennsylvania College of Technology. The simulation results confirmed the overall stability of the polybag film produced through the blown film extrusion process. 展开更多
关键词 LLDPE Melt Flow index Blow-Up Ratio Lay-Flat Width Draw-Down Ratio
在线阅读 下载PDF
Rheological,mechanical,thermal,tribological and morphological properties of PLA-PEKK-HAp-CS composite
2
作者 GURCHETAN Singh RANVIJAY Kumar +2 位作者 RUPINDER Singh MD MUSTAFIZUR Rahman SEERAM Ramakrishna 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1615-1626,共12页
The present study reports investigations on rheological,mechanical,thermal,tribological and morphological properties of feedstock filaments prepared with polylactic acid-polyether ketone ketone-hydroxyapatite-chitosan... The present study reports investigations on rheological,mechanical,thermal,tribological and morphological properties of feedstock filaments prepared with polylactic acid-polyether ketone ketone-hydroxyapatite-chitosan(PLA-PEKK-HAp-CS)composite for 3D printing of functional prototypes.The study consists of a series of melt processing operations on melt flow index(MFI)setup as per ASTM D-1238 for melt flow certainty followed by fixation of reinforcement composition/proportion as 94%PEKK-4%HAp-2%CS(B)by mass in PLA matrix(A).The blending of reinforcement and preparation of feedstock filament for fused deposition modeling(FDM)set up has been performed on commercial twin screw extruder(TSE).The results of study suggest that feedstock filaments prepared with blend of 95%A-5%B(by mass)at 200℃processing temperature and 100 r/min rotational speed on TSE resulted into better tensile properties(35.9 MPa peak strength and 32.3 MPa break strength)with 6.24%surface porosity,42.67 nm surface roughness(R_(a))and acceptable heat capacity(2.14 J/g).However as regards to tribological behavior,the minimum wear of 316μm was observed for sample with poor tensile properties.As regards to crash application for scaffolds the maximum toughness of 1.16 MPa was observed for 85%A-15%B(by mass)at 200℃processing temperature and 150 r/min rotational speed on TSE. 展开更多
关键词 polylactic acid-polyether ketone ketone-hydroxyapatite-chitosan(PLA-PEKK-HAP-CS) twin screw extruder(TSE) differential scanning calorimetry(DSC) melt flow index(MFI) wear test
在线阅读 下载PDF
Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process Using Deep Belief Networks
3
作者 Chang-Hao Zhu Jie Zhang 《International Journal of Automation and computing》 EI CSCD 2020年第1期44-54,共11页
This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measur... This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measure in industrial processes.Lack of online measurement instruments becomes a problem in polymer quality control.One effective solution is to use soft sensors to estimate the quality variables from process data.In recent years,deep learning has achieved many successful applications in image classification and speech recognition.DBN as one novel technique has strong generalization capability to model complex dynamic processes due to its deep architecture.It can meet the demand of modelling accuracy when applied to actual processes.Compared to the conventional neural networks,the training of DBN contains a supervised training phase and an unsupervised training phase.To mine the valuable information from process data,DBN can be trained by the process data without existing labels in an unsupervised training phase to improve the performance of estimation.Selection of DBN structure is investigated in the paper.The modelling results achieved by DBN and feedforward neural networks are compared in this paper.It is shown that the DBN models give very accurate estimations of the polymer melt index. 展开更多
关键词 Polymer melt index soft sensor deep learning deep belief network(DBN) unsupervised training
原文传递
Architecting Branch Structure in Terpolymer of CO_(2),Propylene Oxide and Phthalic Anhydride:An Enhancement in Thermal and Mechanical Performances 被引量:7
4
作者 Wen-Jing Wang Shu-Xian Ye +5 位作者 Jia-Xin Liang Cong-Xiao Fan Yong-Lan Zhu Shuan-Jin Wang Min Xiao Yue-Zhong Meng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第5期462-468,共7页
Poly(propylene carbonate phthalate)(PPC-P)is a chemically modified poly(propylene carbonate)(PPC)biodegradable thermoplastic by introducing phthalic anhydride(PA)as the third monomer into the copolymerization of propy... Poly(propylene carbonate phthalate)(PPC-P)is a chemically modified poly(propylene carbonate)(PPC)biodegradable thermoplastic by introducing phthalic anhydride(PA)as the third monomer into the copolymerization of propylene oxide(PO)and CO_(2).To enhance the thermal and mechanical properties of PPC-P,a branching agent pyromellitic anhydride(PMDA)was introduced into the terpolymerization of PO,PA and CO_(2).The resulting copolymers with branched structure,named branched PPC-P,can be obtained using metal-free Lewis pair consisting of triethyl borane(TEB)and bis(triphenylphosphine)iminium chloride(PPNCl)as catalyst.The products obtained were analyzed by NMR spectroscopy and their thermal,mechanical properties and melt processability were evaluated by DSC,TGA,tensile test and melt flow index(MFI)measurement.The obtained branched PPC-P has a high molecular weight up to 156.0 kg·mol^(-1).It shows an increased glass transition temperature(Tg)higher than 50℃and an enhanced tensile strength as high as 38.9 MPa.Noteworthily,the MFI value decreases obviously,indicative of an improved melt strength arising from the branched structure and high molecular weight.What is more,the branched PPC-P exhibits reasonable biodegradability,which demonstrates the great potential as a new green thermoplastic for the family of biodegradable plastics. 展开更多
关键词 CO_(2)utilization Pyromellitic anhydride BIODEGRADABILITY Branched structure Melt flow index
原文传递
Melt Rheology of Poly(Lactic Acid) Plasticized by Epoxidized Soybean Oil 被引量:3
5
作者 XU Yuqiong YOU Min QU Jinping 《Wuhan University Journal of Natural Sciences》 CAS 2009年第4期349-354,共6页
This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear visc... This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear viscosity, and melt strength of the blends. PLA was blended by the twin-screw plastic extruder at five mass fractions: 3%, 6%, 9%, 12%, and 15% (based on PLA mass). Melt flow index (MFI) was examined with a melt flow indexer. The results indicate that the blends of PLA/ESO had higher MFI than pure PLA, except for MFI at 9% reaching to the lowest point, even lower than that of pure PLA. Melt rheological properties were studied by a capillary rheometer in a temperature range of 160-180℃. The blends exhibited shear-thinning behavior and the apparent shear viscosity was well described by the power law in this shear rate region. The melt strength of PLA plasticized with 6% ESO reached the maximums. ESO was more effective in increasing the melt strength at the mass fractions less than 6%, which could toughen the blends to some extent. Therefore, the authors suggested the optimum addition level of 6%-9% ESO will get good melt rheological performance balance. 展开更多
关键词 poly (lactic acid) (PLA) epoxidized soybean oil melt flow index shear viscosity melt strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部