在任务计算密集型和延迟敏感型的场景下,无人机辅助的移动边缘计算由于其高机动性和放置成本低的特点而被广泛研究.然而,无人机的能耗限制导致其无法长时间工作并且卸载任务内的不同模块往往存在着依赖关系.针对这种情况,以有向无环图(d...在任务计算密集型和延迟敏感型的场景下,无人机辅助的移动边缘计算由于其高机动性和放置成本低的特点而被广泛研究.然而,无人机的能耗限制导致其无法长时间工作并且卸载任务内的不同模块往往存在着依赖关系.针对这种情况,以有向无环图(direct acyclic graph,DAG)为基础对任务内部模块的依赖关系进行建模,综合考虑系统时延和能耗的影响,以最小化系统成本为优化目标得到最优的卸载策略.为了解决这一优化问题,提出了一种基于亚群、高斯变异和反向学习的二进制灰狼优化算法(binary grey wolf optimization algorithm based on subpopulation,Gaussian mutation,and reverse learning,BGWOSGR).仿真结果表明,所提出算法计算出的系统成本比其他4种对比方法分别降低了约19%、27%、16%、13%,并且收敛速度更快.展开更多
多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提...多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提前安装。此外,同时进行任务迁移和服务缓存可能会因时间冲突而导致计算延时。因此,针对上述相关问题,首先将任务迁移和服务缓存决策进行解耦,针对深度强化学习(deep reinforcement learning,DRL)在具有高维的混合决策空间的性能提升不明显的缺点(例如资源分配时利用率不高),将DRL与Transformer结合,通过在历史数据中学习,输出当前时隙的任务迁移决策和下一时隙的任务决策,保证任务到达边缘服务器时能立即执行。其次,为了提高资源分配问题中的资源利用率,将问题分解为连续资源分配问题和离散的任务迁移与服务缓存问题,利用凸优化技术求解资源分配最优决策。广泛的数值结果表明,与其他基线算法相比,提出的算法能有效地减少任务的平均完成时延,同时在资源利用率和稳定性方面也有优异的表现。展开更多
随着智能电网系统中移动终端的增加,其对传输数据低时延、大带宽和高可靠性的需求尤为紧迫。为解决其中无线传输、信息处理和可靠性不足等问题,文章采用“切片分组网(sliced packet network,SPN)+可信无线局域网(wireless local area ne...随着智能电网系统中移动终端的增加,其对传输数据低时延、大带宽和高可靠性的需求尤为紧迫。为解决其中无线传输、信息处理和可靠性不足等问题,文章采用“切片分组网(sliced packet network,SPN)+可信无线局域网(wireless local area network,WLAN)”通信新技术网络架构,建立多种移动终端设备安全无线传输和计算任务卸载的总时延优化卸载模型,提出一种基于交替优化技术的算法。仿真结果表明,该策略不仅保证设备安全高效地接入网络,还可显著降低传输时延,具有优异的成本效益。展开更多
文摘在任务计算密集型和延迟敏感型的场景下,无人机辅助的移动边缘计算由于其高机动性和放置成本低的特点而被广泛研究.然而,无人机的能耗限制导致其无法长时间工作并且卸载任务内的不同模块往往存在着依赖关系.针对这种情况,以有向无环图(direct acyclic graph,DAG)为基础对任务内部模块的依赖关系进行建模,综合考虑系统时延和能耗的影响,以最小化系统成本为优化目标得到最优的卸载策略.为了解决这一优化问题,提出了一种基于亚群、高斯变异和反向学习的二进制灰狼优化算法(binary grey wolf optimization algorithm based on subpopulation,Gaussian mutation,and reverse learning,BGWOSGR).仿真结果表明,所提出算法计算出的系统成本比其他4种对比方法分别降低了约19%、27%、16%、13%,并且收敛速度更快.
文摘随着智能电网系统中移动终端的增加,其对传输数据低时延、大带宽和高可靠性的需求尤为紧迫。为解决其中无线传输、信息处理和可靠性不足等问题,文章采用“切片分组网(sliced packet network,SPN)+可信无线局域网(wireless local area network,WLAN)”通信新技术网络架构,建立多种移动终端设备安全无线传输和计算任务卸载的总时延优化卸载模型,提出一种基于交替优化技术的算法。仿真结果表明,该策略不仅保证设备安全高效地接入网络,还可显著降低传输时延,具有优异的成本效益。