期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
基于深度学习算法Mask R-CNN的甲状腺结节检测模型研究
1
作者 王杰 王至诚 +2 位作者 娄帅 董建成 曹新志 《医学信息学杂志》 2025年第3期84-89,共6页
目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,... 目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,使用labelme工具进行结节位置标注。对Mask R-CNN的主干网络分别采用MobileNetV3、ResNet50、ResNet101和ResNet152进行替换,并引入特征金字塔和感兴趣区域对齐,采用迁移学习训练策略训练模型,比较不同网络下目标检测效果。结果/结论主干网络采用ResNet101训练的模型平均精确度为86.8%,平均召回率为95.3%,平均F1分数为90.6%,优于其他主干网络,能更精确地检测甲状腺结节,具有一定临床应用价值。 展开更多
关键词 甲状腺结节 mask r-cnn 目标检测 神经网络
在线阅读 下载PDF
基于Mask R-CNN的复杂环境下辣椒识别方法研究 被引量:1
2
作者 付晓鸽 李涵 +1 位作者 左治江 杜铮 《中国农机化学报》 北大核心 2024年第9期215-219,共5页
针对辣椒采摘机器人在真实场景中辣椒簇状、粘连和光照不均导致无法精准采摘辣椒的问题,提出一种基于Mask R-CNN实例分割网络模型的辣椒识别方法。以真实场景下的辣椒为研究对象,采集自然生长的辣椒图像4496张,对其中的4000张进行数据... 针对辣椒采摘机器人在真实场景中辣椒簇状、粘连和光照不均导致无法精准采摘辣椒的问题,提出一种基于Mask R-CNN实例分割网络模型的辣椒识别方法。以真实场景下的辣椒为研究对象,采集自然生长的辣椒图像4496张,对其中的4000张进行数据标注作为数据集,通过设置不同的学习率、训练周期和模型网络层对数据集进行训练。试验结果表明,Mask R-CNN网络模型对真实场景下辣椒的识别和分割效果较好,平均准确率达到90.34%,平均速度达到0.82 s/幅,为智能辣椒采摘机器人的辣椒分割识别和定位提供有力的技术支撑。 展开更多
关键词 辣椒识别 实例分割 mask r-cnn 神经网络 采摘机器人
在线阅读 下载PDF
复杂背景下基于改进Mask R-CNN的路面裂缝检测算法 被引量:1
3
作者 张晓华 李小龙 +1 位作者 艾金泉 舒兆翰 《北京测绘》 2024年第3期431-436,共6页
裂缝检测对路面养护具有重要意义,深度学习在该领域取得一定成效。然而,在实际应用中,图像中的噪声纹理背景、复杂的裂缝拓扑结构和图像采集设备给裂缝检测带来了一定的挑战。为了提升在复杂场景下的路面裂缝检测精度,提出了一种改进掩... 裂缝检测对路面养护具有重要意义,深度学习在该领域取得一定成效。然而,在实际应用中,图像中的噪声纹理背景、复杂的裂缝拓扑结构和图像采集设备给裂缝检测带来了一定的挑战。为了提升在复杂场景下的路面裂缝检测精度,提出了一种改进掩码区域卷积神经网络(Mask R-CNN)模型的实例分割算法。使用ConvNeXt-T替代Mask R-CNN的ResNet50框架作为特征生成网络,在自下而上捕获长期依赖的同时保持裂缝特征多样性;设计高维特征提取模块(HFEM)获取高级语义信息,消除背景噪声;引入感受野模块(RFB),扩大感受野,增强多尺度特征信息交互能力。在多结构裂缝图像(MSCI)数据集上进行对比实验,结果表明,提出的改进方法能显著提升Mask R-CNN模型的分割精度,优于经典的Cascade Mask RCNN,最佳模型F1得分84.15%,相较原算法提高了6.29%。在DeepCrack数据集上进行泛化性实验,表现优异。 展开更多
关键词 路面裂缝检测 复杂场景 掩码区域卷积神经网络(mask r-cnn) 实例分割
在线阅读 下载PDF
基于改进Mask RCNN的盲道检测算法
4
作者 黄宁霞 朱亮 《长江信息通信》 2025年第1期39-42,共4页
针对现有的盲道检测算法容易受到光照、阴影等影响,导致分割效果差的问题,提出基于改进Mask RCNN的盲道检测算法。为了提高网络的检测能力,本文增加一个滑动窗口来增大感受野的面积。在筛选时采用软非极大值抑制算法代替非极大值抑制算... 针对现有的盲道检测算法容易受到光照、阴影等影响,导致分割效果差的问题,提出基于改进Mask RCNN的盲道检测算法。为了提高网络的检测能力,本文增加一个滑动窗口来增大感受野的面积。在筛选时采用软非极大值抑制算法代替非极大值抑制算法,减少了目标的漏检和误检等问题。最后在深度学习框架中经过多次迭代训练,得到优化的检测模型。复杂场景下的实际测试结果表明,该算法适用于多种场景下的盲道井盖检测,具有较好的检测效果。 展开更多
关键词 盲道识别 卷积神经网络 mask RCNN Soft-NMS
在线阅读 下载PDF
基于改进Mask R-CNN的堆积式袋装炸药识别方法研究
5
作者 付晓鸽 左治江 李涵 《中国测试》 CAS 北大核心 2024年第10期81-86,共6页
针对爆破场景下,光照变化、袋装炸药紧密堆积以及袋与袋粘连导致边界模糊等问题,提出一种基于改进Mask R-CNN的堆积式袋装炸药识别方法。该文在Mask R-CNN的基础上采用空洞卷积代替普通卷积,引入“扩张率”参数,使得袋装炸药的边缘特征... 针对爆破场景下,光照变化、袋装炸药紧密堆积以及袋与袋粘连导致边界模糊等问题,提出一种基于改进Mask R-CNN的堆积式袋装炸药识别方法。该文在Mask R-CNN的基础上采用空洞卷积代替普通卷积,引入“扩张率”参数,使得袋装炸药的边缘特征得到充分保留。利用Faster R-CNN网络模型、FCN网络模型、Mask R-CNN网络模型和改进Mask R-CNN网络模型对相同的数据集进行检测,对比袋装炸药边缘分割的效果。实验结果表明:该文提出基于改进Mask R-CNN的堆积式袋装炸药识别方法对袋装炸药边缘信息保存较为完整,平均准确率达到90.42%,平均速度达到0.67 s/piece,为袋装炸药装卸搬运实现更高程度的自动化提供有力的技术支撑。 展开更多
关键词 实例分割 mask r-cnn 堆积式袋装炸药 神经网络
在线阅读 下载PDF
基于Mask R-CNN和结构光的焊缝特征信息检测方法研究
6
作者 王国城 方成刚 +1 位作者 张文东 程丽娟 《煤矿机械》 2024年第6期218-220,共3页
为了提高焊缝跟踪系统的精准度,提出了一种基于Mask R-CNN和结构光的焊缝特征参数检测系统。通过Mask R-CNN对焊缝结构光图像提取线结构光边界信息,再通过灰度重心法完成对结构光中心线的提取;对中心线图像进行斜率分析,来确定焊缝特征... 为了提高焊缝跟踪系统的精准度,提出了一种基于Mask R-CNN和结构光的焊缝特征参数检测系统。通过Mask R-CNN对焊缝结构光图像提取线结构光边界信息,再通过灰度重心法完成对结构光中心线的提取;对中心线图像进行斜率分析,来确定焊缝特征点坐标;最后将坐标信息传输至PLC中,通过PLC控制十字滑台带动焊枪进行焊缝的跟踪操作。避免了强光、灰尘和噪声等干扰,提高了焊缝特征信息检测的准确性。通过与Faster R-CNN和YOLOv5的预测实验对比,Mask R-CNN在焊缝检测中的准确度和稳定性更高。 展开更多
关键词 焊缝检测 线结构光 神经网络 mask r-cnn
在线阅读 下载PDF
改进Mask R-CNN的无人机影像建筑物提取
7
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 mask r-cnn 路径融合 空洞空间金字塔池化模块
在线阅读 下载PDF
基于改进Mask R-CNN的输电线路安全检测方法研究
8
作者 王铭晟 《通信电源技术》 2024年第17期219-221,共3页
随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region C... 随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region Convolutional Neural Network,Mask R-CNN)的输电线路安全检测模型,并引入特征金字塔网络(Feature Pyramid Network,FPN)对其进行改进。实验结果表明,在数据集尺寸为500时,改进Mask R-CNN模型的准确率为0.91,损失函数值为0.01。改进的Mask R-CNN模型能够有效提升输电线路缺陷检测的精度,具有较高的实用价值,能够提高电力系统的安全监控水平。 展开更多
关键词 输电线路 安全检测 掩膜区域卷积神经网络(mask r-cnn) 特征金字塔网络(FPN)
在线阅读 下载PDF
基于Mask R-CNN的柑橘主叶脉显微图像实例分割模型 被引量:3
9
作者 翁海勇 李效彬 +3 位作者 肖康松 丁若晗 贾良权 叶大鹏 《农业机械学报》 EI CAS CSCD 北大核心 2023年第7期252-258,271,共8页
针对目前植物解剖表型的测量与分析过程自动化低,难以应对复杂解剖表型的提取和识别的问题,以柑橘主叶脉为研究对象,提出了一种基于掩膜区域卷积神经网络(Mask region convolutional neural network,Mask R-CNN)的主叶脉显微图像实例分... 针对目前植物解剖表型的测量与分析过程自动化低,难以应对复杂解剖表型的提取和识别的问题,以柑橘主叶脉为研究对象,提出了一种基于掩膜区域卷积神经网络(Mask region convolutional neural network,Mask R-CNN)的主叶脉显微图像实例分割模型,以残差网络ResNet50和特征金字塔(Feature pyramid network,FPN)为主干特征提取网络,在掩膜(Mask)分支上添加一个新的感兴趣区域对齐层(Region of interest Align,RoI-Align),提升Mask分支的分割精度。结果表明,该网络架构能够精准地对柑橘主叶脉横切面中的髓部、木质部、韧皮部和皮层细胞进行识别分割。Mask R-CNN模型对髓部、木质部、韧皮部和皮层细胞的分割平均精确率(交并比(IoU)为0.50)分别为98.9%、89.8%、95.7%和97.2%,对4个组织区域的分割平均精确率均值(IoU为0.50)为95.4%。与未在Mask分支添加RoI-Align的Mask R-CNN相比,精度提升1.6个百分点。研究结果表明,Mask R-CNN模型对柑橘主叶脉各类组织区域具有良好的识别分割效果,可为柑橘微观表型研究提供技术支持与研究基础。 展开更多
关键词 柑橘主叶脉 显微图像 掩膜区域卷积神经网络 实例分割 微观表型
在线阅读 下载PDF
基于改进的Mask R-CNN自然场景下苹果识别研究 被引量:4
10
作者 吕继东 王艺洁 +1 位作者 夏正旺 马正华 《常州大学学报(自然科学版)》 CAS 2022年第1期68-77,共10页
在复杂自然场景下,苹果目标因具有成簇生长、重叠果实和光线变化大等特点,应用深度学习方法相比传统方法来实现果实的识别优势明显。提出基于Mask R-CNN网络检测分割架构,采用膨胀卷积的优化策略,通过候选框与像素分割相结合的思路,同... 在复杂自然场景下,苹果目标因具有成簇生长、重叠果实和光线变化大等特点,应用深度学习方法相比传统方法来实现果实的识别优势明显。提出基于Mask R-CNN网络检测分割架构,采用膨胀卷积的优化策略,通过候选框与像素分割相结合的思路,同时对输入苹果图像进行目标果实的识别。实验结果表明,基于Mask R-CNN框架改进的网络模型的识别性能较原始Mask R-CNN网络有较大提升。针对不同光照角度、不同颜色和不同大小的苹果,改进Mask R-CNN网络的F_(1)值分别提升了2.17%,1.87%和4.93%。 展开更多
关键词 神经网络 目标检测 苹果采摘 mask r-cnn 实例分割
在线阅读 下载PDF
人体关键点检测的Mask R-CNN网络模型改进研究 被引量:8
11
作者 宋玲 夏智敏 《计算机工程与应用》 CSCD 北大核心 2021年第1期150-160,共11页
由于在现有的人体关键点检测问题中,深度学习解决方案采用的掩膜区域卷积神经网络Mask R-CNN存在参数量大导致计算成本过高、迭代次数多导致训练时间过长等问题,提出了一种基于重组通道网络ShuffleNet改进Mask R-CNN网络模型。通过引入S... 由于在现有的人体关键点检测问题中,深度学习解决方案采用的掩膜区域卷积神经网络Mask R-CNN存在参数量大导致计算成本过高、迭代次数多导致训练时间过长等问题,提出了一种基于重组通道网络ShuffleNet改进Mask R-CNN网络模型。通过引入ShuffleNet的网络结构,使用分组逐点卷积与通道重排的操作与联合边框回归和掩膜分割的计算结果对Mask R-CNN进行轻量化改进。使用该方法改进网络模型在进行单人或多人情况下的人体关键点检测中,在保留精度的前提下,可以加快运行速度,减少检测时间。 展开更多
关键词 深度学习 卷积神经网络(CNN) 掩膜区域卷积神经网络(mask r-cnn) 重组通道网络 人体关键点检测
在线阅读 下载PDF
基于Mask R-CNN的铁谱磨粒智能分割与识别 被引量:5
12
作者 安超 魏海军 +2 位作者 刘竑 梁麒立 汪璐璐 《润滑与密封》 CAS CSCD 北大核心 2020年第3期107-112,共6页
针对铁谱图像因背景复杂、尺寸分布广、颗粒重叠等导致难以精确分割与识别的问题,以相似度高的疲劳剥块、严重滑动磨粒、层状磨粒共3种异常磨粒作为研究对象,提出基于深度神经网络模型Mask R-CNN的对多目标铁谱磨粒进行智能分割与识别... 针对铁谱图像因背景复杂、尺寸分布广、颗粒重叠等导致难以精确分割与识别的问题,以相似度高的疲劳剥块、严重滑动磨粒、层状磨粒共3种异常磨粒作为研究对象,提出基于深度神经网络模型Mask R-CNN的对多目标铁谱磨粒进行智能分割与识别的方法,并对特征提取层分别选用深度不同的残差网络ResNet50和ResNet101进行对比试验。实验结果表明,基于迁移学习方法的Mask R-CNN+ResNet101模型能够在复杂背景下对多目标、多类型、多尺寸的相似磨粒进行有效分割与识别,测试集的平均精度高达76.2%,模型具有较好的泛化能力。 展开更多
关键词 深度神经网络 铁谱磨粒 迁移学习 mask r-cnn 分割与识别
在线阅读 下载PDF
基于改进的Mask R-CNN的染色体图像分割框架 被引量:9
13
作者 冯涛 陈斌 张跃飞 《计算机应用》 CSCD 北大核心 2020年第11期3332-3339,共8页
针对染色体图像的人工分割耗时费力且当前自动分割方法精度不佳的问题,基于改进的Mask R-CNN提出了一种染色体图像分割框架——Mask Oriented R-CNN,引入方向信息对染色体图像进行实例分割。首先,新增有向包围框回归分支,以预测紧实包... 针对染色体图像的人工分割耗时费力且当前自动分割方法精度不佳的问题,基于改进的Mask R-CNN提出了一种染色体图像分割框架——Mask Oriented R-CNN,引入方向信息对染色体图像进行实例分割。首先,新增有向包围框回归分支,以预测紧实包围框并获取方向信息;然后,提出新的交并比(IoU)度量——角度加权交并比(AwIoU),从而结合方向信息与边的关系以改进冗余包围框的判据;最后,实现有向卷积通路结构,通过拷贝掩模分支通路并依据实例的方向信息选择训练路径来减少掩模预测中的干扰。实验结果表明,相较于基准模型Mask R-CNN,Mask Oriented R-CNN在IoU阈值为0.5时的平均精度均值指标提升了10.22个百分点,IoU阈值为0.5~0.95时的平均指标提升了4.91个百分点。研究结果显示,Mask Oriented R-CNN框架相较于基准模型取得了更好的染色体图像分割结果,有助于实现染色体图像自动分割。 展开更多
关键词 卷积神经网络 实例分割 mask r-cnn 染色体图像分割 图像分割 非极大值抑制 交并比
在线阅读 下载PDF
基于改进Mask R-CNN的轨道扣件状态检测方法 被引量:8
14
作者 许贵阳 李金洋 +1 位作者 白堂博 杨建伟 《中国铁道科学》 EI CAS CSCD 北大核心 2022年第1期44-51,共8页
为提高轨道扣件状态检测的准确率,基于K均值聚类算法改进掩膜区域卷积神经网络(Mask R-CNN)实例分割算法中的区域建议网络。进行基于改进Mask R-CNN的轨道扣件状态检测方法研究,并将该方法分别应用于普速铁路有砟轨道2个扣件数据集和高... 为提高轨道扣件状态检测的准确率,基于K均值聚类算法改进掩膜区域卷积神经网络(Mask R-CNN)实例分割算法中的区域建议网络。进行基于改进Mask R-CNN的轨道扣件状态检测方法研究,并将该方法分别应用于普速铁路有砟轨道2个扣件数据集和高速铁路无砟轨道1个扣件数据集上进行轨道扣件状态检测。结果表明:该方法能对普速铁路有砟轨道和高速铁路无砟轨道图像中的扣件状态进行准确检测,扣件的定位准确率和分类准确率平均分别达到97.05%和98.36%,均优于YOLO V3,Faster R-CNN和Mask R-CNN算法;相较于前2种算法,本方法对普速铁路有砟轨道扣件状态检测的优势更为明显。 展开更多
关键词 轨道 扣件 状态检测 掩膜区域卷积神经网络 K均值聚类算法 定位准确率 分类准确率
在线阅读 下载PDF
Road Damage Detection and Classification Using Mask R-CNN with DenseNet Backbone 被引量:3
15
作者 Qiqiang Chen Xinxin Gan +2 位作者 Wei Huang Jingjing Feng H.Shim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2201-2215,共15页
Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.... Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods. 展开更多
关键词 Road damage detection road damage classification mask r-cnn framework densely connected network
在线阅读 下载PDF
基于Mask R-CNN网络的磨损颗粒智能识别与应用 被引量:10
16
作者 杨智宏 贺石中 +2 位作者 冯伟 李秋秋 何伟楚 《摩擦学学报》 EI CAS CSCD 北大核心 2021年第1期105-114,共10页
针对设备磨损故障诊断中磨粒识别技术难度高、工作主观经验影响大等问题,采用深度学习技术开展了磨粒智能识别的研究,提出了基于Mask R-CNN卷积神经网络的磨粒数字化表征方法.该方法利用迁移学习训练基于Mask R-CNN网络的磨粒识别模型... 针对设备磨损故障诊断中磨粒识别技术难度高、工作主观经验影响大等问题,采用深度学习技术开展了磨粒智能识别的研究,提出了基于Mask R-CNN卷积神经网络的磨粒数字化表征方法.该方法利用迁移学习训练基于Mask R-CNN网络的磨粒识别模型对图像中磨粒进行识别和实例分割,然后使用Suzuki85算法、迭代算法、等比例计算方法计算出磨粒的真实尺寸,解决了磨粒分析中难定量分析的问题.结果表明:基于Mask R-CNN网络(采用R-101-FPN骨干网络)训练的磨粒识别模型可以对图像中多个异常磨损颗粒进行识别,综合准确率和召回率达到当前图像识别领域的主流水平.辅以上述Suzuki85等算法,成功实现磨粒图像的定量评价分析,对促进设备故障诊断技术的自动化发展和工业应用具有一定的实际应用价值. 展开更多
关键词 卷积神经网络 深度学习 mask r-cnn 磨粒识别 磨粒分析
在线阅读 下载PDF
基于改进的Mask R-CNN的行人细粒度检测算法 被引量:10
17
作者 朱繁 王洪元 张继 《计算机应用》 CSCD 北大核心 2019年第11期3210-3215,共6页
针对复杂场景下行人检测效果差的问题,采用基于深度学习的目标检测中领先的研究成果,提出了一种基于改进Mask R-CNN框架的行人检测算法。首先,采用K-means算法对行人数据集的目标框进行聚类得到合适的长宽比,通过增加一组长宽比(2∶5)... 针对复杂场景下行人检测效果差的问题,采用基于深度学习的目标检测中领先的研究成果,提出了一种基于改进Mask R-CNN框架的行人检测算法。首先,采用K-means算法对行人数据集的目标框进行聚类得到合适的长宽比,通过增加一组长宽比(2∶5)使12种anchors适应图像中行人的尺寸;然后,结合细粒度图像识别技术,实现行人的高定位精度;其次,采用全卷积网络(FCN)分割前景对象,并进行像素预测获得行人的局部掩码(上半身、下半身),实现对行人的细粒度检测;最后,通过学习行人的局部特征获得行人的整体掩码。为了验证改进算法的有效性,将其与当前具有代表性的目标检测方法(如更快速的区域卷积神经网络(Faster R-CNN)、YOLOv2、R-FCN)在同数据集上进行对比。实验结果表明,改进的算法提高了行人检测的速度和精度,并且降低了误检率。 展开更多
关键词 mask r-cnn 行人检测 K-MEANS算法 细粒度 全卷积网络
在线阅读 下载PDF
基于改进的Mask R-CNN的公路裂缝检测算法 被引量:17
18
作者 张跃飞 王敬飞 +2 位作者 陈斌 冯涛 陈志毅 《计算机应用》 CSCD 北大核心 2020年第S02期162-165,共4页
针对复杂场景下,Mask R-CNN检测公路裂缝掩码拟合质量不高的问题,提出一种基于改进的Mask RCNN的路面裂缝检测算法。首先,采用自适应带权重的损失函数,从而以权重的方式让神经网路更加注重细微裂缝的特征;然后,在Mask R-CNN的掩码支路中... 针对复杂场景下,Mask R-CNN检测公路裂缝掩码拟合质量不高的问题,提出一种基于改进的Mask RCNN的路面裂缝检测算法。首先,采用自适应带权重的损失函数,从而以权重的方式让神经网路更加注重细微裂缝的特征;然后,在Mask R-CNN的掩码支路中,添加一个新的比例预测分支来指导损失函数,让神经网路在学习过程中更加注重裂缝的细节信息,进而提升掩码预测的质量。为了验证改进算法的有效性,将其与当前具有代表性的实例分割检测方法(如Mask R-CNN、PANet)在相同数据集上进行对比。实验结果表明,改进的算法提升了掩码拟合的质量,增加了检测精度。 展开更多
关键词 公路裂缝检测 深度学习 目标检测 mask r-cnn 实例分割 语义分割
在线阅读 下载PDF
基于LabVIEW和Mask R-CNN的柱塞式制动主缸内槽表面缺陷检测 被引量:6
19
作者 金颖 王学影 段林茂 《现代制造工程》 CSCD 北大核心 2020年第5期125-132,共8页
为了解决传统图像处理方法对于铸铝材料表面缺陷检测通用性不高、准确度低等问题,研究了一种基于Mask R-CNN神经网络的缺陷检测系统。首先,采用自主研发的缺陷检测装置采集柱塞式制动主缸内槽表面图像,对其进行预处理,制作成Microsoft C... 为了解决传统图像处理方法对于铸铝材料表面缺陷检测通用性不高、准确度低等问题,研究了一种基于Mask R-CNN神经网络的缺陷检测系统。首先,采用自主研发的缺陷检测装置采集柱塞式制动主缸内槽表面图像,对其进行预处理,制作成Microsoft COCO格式数据集;其次,搭建适用于该数据集的Mask R-CNN神经网络结构,并绘制训练过程损失函数与平均精度均值曲线;最后,将检测结果与基于SVM和Faster R-CNN模型的检测结果进行比较,统计了3种神经网络模型的单图检测平均时间和识别率。试验结果表明,在相同样本条件下,该方法的识别率比另外2种方法高,达到了93.6%,能够更精确地检测柱塞式制动主缸内槽的表面缺陷。 展开更多
关键词 深度学习 缺陷检测 mask r-cnn 柱塞主缸 卷积神经网络
在线阅读 下载PDF
基于Mask R-CNN的人脸皮肤色斑检测分割方法
20
作者 陈友升 刘桂雄 《激光杂志》 北大核心 2019年第12期19-22,共4页
色斑参数特征是衡量皮肤健康程度的一项重要指标,通过分析国内外研究皮肤色斑图像方法,提出基于Mask R-CNN的人脸皮肤色斑检测分割方法。针对人脸图像中色斑区域小导致的训练样本类别不平衡问题,提出全脸干扰项数据标注方案,有效提高色... 色斑参数特征是衡量皮肤健康程度的一项重要指标,通过分析国内外研究皮肤色斑图像方法,提出基于Mask R-CNN的人脸皮肤色斑检测分割方法。针对人脸图像中色斑区域小导致的训练样本类别不平衡问题,提出全脸干扰项数据标注方案,有效提高色斑检测分割效果;通过分析不同深度的骨干网络对色斑识别效果、时间性能影响,指出ResNet-34骨干网络在色斑识别效果、时间性能达到较佳平衡;基于上述技术构建Mask R-CNN人脸皮肤色斑分割模型并进行实验,结果表明:基于Mask R-CNN的人脸皮肤色斑检测分割方法能够实现不同位置、尺度色斑的检测,J(A,B)值达81.5%。 展开更多
关键词 mask r-cnn 神经网络 深度学习 色斑检测
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部