The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusio...The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy.展开更多
CBN (Cubic Boron Nitride) is a highly efficient abrasive and has unique properties (highhardness, high thermal stability and high chemical inertia). As early as 1969 CBN Wheels had al-ready been made and showed excell...CBN (Cubic Boron Nitride) is a highly efficient abrasive and has unique properties (highhardness, high thermal stability and high chemical inertia). As early as 1969 CBN Wheels had al-ready been made and showed excellent performance for grainding high speed steels and othermaterials hard to be ground. So far, however, CBN Wheels are still not popularly utilized in theindustry, the writer considers the main reason being the inadequate study for practical applica-tions and especially the suitable dressing technique. The dressing of resinoid CBN Wheels discussed in the paper, is different from that ofconventional ones. It has to be divided into two operations, truing and sharpening, each of whichhas its specific and independent functions. A simple dressing method with a lot of informationsuitable for production is studied; finally, the grain height protruding from the bond is taken asan index for evaluating the dressing results, and the effect of grain height on the grinding per-formance is discussed. By selecting proper conditions according to the workpiece requirements, abetter technical and economical benifit can be obtained.展开更多
A systematic wear model of the cylindrical grinding process with an alumina abrasive belt from the perspective of single grain sliding wear was established in this study.The model consists of three parts:a single cutt...A systematic wear model of the cylindrical grinding process with an alumina abrasive belt from the perspective of single grain sliding wear was established in this study.The model consists of three parts:a single cutting force model derived by applying a stress integration method,a single grain wear height analysis based on the wear rate of alumina,and a grinding mileage prediction of multiple grains with Gaussian distributed protrusion heights.Cutting force,single grain wear height and full‐size grinding mileage verification experiments were conducted.The results indicated that the established model was in reasonable agreement with the experimental outcomes,which suggests that this model could be useful in the industry to predict the wear process of abrasive belts.展开更多
Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding w...Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance,the chip storage capability of the working layers and the stability and controllability of the dressing process.Therefore,in this work,novel metallic cBN superabrasive wheels with aggregated cBN(AcBN)grains and open pore structures were fabricated to improve machining efficiency and surface quality.Prior to the grinding trials,the airborne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials.Subsequently,the comparative experiments were performed and then the variations in grinding force and force ratio,grinding temperature,tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti-6Al-4V alloys.In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes,the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60#and the abrasive blasting distance and time of 60 mm and 15 s,respectively.The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN(McBN)grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains.The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-Ⅳ-002-001 and P2023-B-Ⅳ-003-001)+3 种基金the Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology(No.JSKL2223K01)the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the Henan Science and Technology Public Relations Project(No.212102210445).
文摘The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy.
文摘CBN (Cubic Boron Nitride) is a highly efficient abrasive and has unique properties (highhardness, high thermal stability and high chemical inertia). As early as 1969 CBN Wheels had al-ready been made and showed excellent performance for grainding high speed steels and othermaterials hard to be ground. So far, however, CBN Wheels are still not popularly utilized in theindustry, the writer considers the main reason being the inadequate study for practical applica-tions and especially the suitable dressing technique. The dressing of resinoid CBN Wheels discussed in the paper, is different from that ofconventional ones. It has to be divided into two operations, truing and sharpening, each of whichhas its specific and independent functions. A simple dressing method with a lot of informationsuitable for production is studied; finally, the grain height protruding from the bond is taken asan index for evaluating the dressing results, and the effect of grain height on the grinding per-formance is discussed. By selecting proper conditions according to the workpiece requirements, abetter technical and economical benifit can be obtained.
基金financial support from “China Scholarship Council(201707090012)” which helped his stay in Japan for this joint international researchsupported by “the Fundamental Research Funds for the Central Universities”(2018JBZ105)Natural Science Foundation of Tianjin(No.15JCQNJC04800)
文摘A systematic wear model of the cylindrical grinding process with an alumina abrasive belt from the perspective of single grain sliding wear was established in this study.The model consists of three parts:a single cutting force model derived by applying a stress integration method,a single grain wear height analysis based on the wear rate of alumina,and a grinding mileage prediction of multiple grains with Gaussian distributed protrusion heights.Cutting force,single grain wear height and full‐size grinding mileage verification experiments were conducted.The results indicated that the established model was in reasonable agreement with the experimental outcomes,which suggests that this model could be useful in the industry to predict the wear process of abrasive belts.
基金financially supported by the National Natural Science Foundation of China(Nos.51921003,92160301 and 52175415)the Fundamental Research Funds for the Central University(No.NP2022441)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Open Foundation State Key Laboratory of Mechanical Transmissions(No.SKLMT-MSKFKT-202101).
文摘Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance,the chip storage capability of the working layers and the stability and controllability of the dressing process.Therefore,in this work,novel metallic cBN superabrasive wheels with aggregated cBN(AcBN)grains and open pore structures were fabricated to improve machining efficiency and surface quality.Prior to the grinding trials,the airborne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials.Subsequently,the comparative experiments were performed and then the variations in grinding force and force ratio,grinding temperature,tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti-6Al-4V alloys.In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes,the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60#and the abrasive blasting distance and time of 60 mm and 15 s,respectively.The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN(McBN)grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains.The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.