期刊文献+
共找到2,685篇文章
< 1 2 135 >
每页显示 20 50 100
Predicting formation lithology from log data by using a neural network 被引量:6
1
作者 Wang Kexiong Zhang Laibin 《Petroleum Science》 SCIE CAS CSCD 2008年第3期242-246,共5页
In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the... In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field. 展开更多
关键词 Kela-2 gas field neural network improved back-propagation (BP) model log data lithology prediction
在线阅读 下载PDF
Design and Implementation of Log Data Analysis Management System Based on Hadoop 被引量:2
2
作者 Dunhong Yao Yu Chen 《Journal of Information Hiding and Privacy Protection》 2020年第2期59-65,共7页
With the rapid development of the Internet,many enterprises have launched their network platforms.When users browse,search,and click the products of these platforms,most platforms will keep records of these network be... With the rapid development of the Internet,many enterprises have launched their network platforms.When users browse,search,and click the products of these platforms,most platforms will keep records of these network behaviors,these records are often heterogeneous,and it is called log data.To effectively to analyze and manage these heterogeneous log data,so that enterprises can grasp the behavior characteristics of their platform users in time,to realize targeted recommendation of users,increase the sales volume of enterprises’products,and accelerate the development of enterprises.Firstly,we follow the process of big data collection,storage,analysis,and visualization to design the system,then,we adopt HDFS storage technology,Yarn resource management technology,and gink load balancing technology to build a Hadoop cluster to process the log data,and adopt MapReduce processing technology and data warehouse hive technology analyze the log data to obtain the results.Finally,the obtained results are displayed visually,and a log data analysis system is successfully constructed.It has been proved by practice that the system effectively realizes the collection,analysis and visualization of log data,and can accurately realize the recommendation of products by enterprises.The system is stable and effective. 展开更多
关键词 log data HADOOP data analysis data visualization
在线阅读 下载PDF
Alarm Log Data Augmentation Algorithm Based on a GAN Model and Apriori
3
作者 Yang Yang Yu-Ting Li +2 位作者 Yong-Hua Huo Zhi-Peng Gao Lan-Lan Rui 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第4期951-966,共16页
The complexity of alarm detection and diagnosis tasks often results in a lack of alarm log data.Due to the strong rule associations inherent in alarm log data,existing data augmentation algorithms cannot obtain good r... The complexity of alarm detection and diagnosis tasks often results in a lack of alarm log data.Due to the strong rule associations inherent in alarm log data,existing data augmentation algorithms cannot obtain good results for alarm log data.To address this problem,this paper introduces a new algorithm for augmenting alarm log data,termed APRGAN,which combines a generative adversarial network(GAN)with the Apriori algorithm.APRGAN generates alarm log data under the guidance of rules mined by the rule miner.Moreover,we propose a new dynamic updating mechanism to alleviate the mode collapse problem of the GAN.In addition to updating the real reference dataset used to train the discriminator in the GAN,we dynamically update the parameters and the rule set of the Apriori algorithm according to the data generated in each epoch.Through extensive experimentation on two public datasets,it is demonstrated that APRGAN surpasses other data augmentation algorithms in the domain with respect to alarm log data augmentation,as evidenced by its superior performance on metrics such as BLEU,ROUGE,and METEOR. 展开更多
关键词 data augmentation alarm log data APRIORI generative adversarial network(GAN)
原文传递
Identification of reservoir types in deep carbonates based on mixedkernel machine learning using geophysical logging data
4
作者 Jin-Xiong Shi Xiang-Yuan Zhao +3 位作者 Lian-Bo Zeng Yun-Zhao Zhang Zheng-Ping Zhu Shao-Qun Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1632-1648,共17页
Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analy... Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates. 展开更多
关键词 Reservoir type identification Geophysical logging data Kernel Fisher discriminantanalysis Mixedkernel function Deep carbonates
在线阅读 下载PDF
大庆油田CIFLog测井数智云平台建设应用实践 被引量:1
5
作者 李宁 刘英明 +2 位作者 王才志 原野 夏守姬 《大庆石油地质与开发》 CAS 北大核心 2024年第3期17-25,共9页
针对大庆油田生产中测井数据量大、类型多和数据来源复杂等问题,以中国石油天然气集团有限公司大型测井处理解释软件CIFLog为基础,以业务需求为主导,采用微服务架构和测井分布式云计算技术体系,研发测井大数据存储管理、中间服务层和云... 针对大庆油田生产中测井数据量大、类型多和数据来源复杂等问题,以中国石油天然气集团有限公司大型测井处理解释软件CIFLog为基础,以业务需求为主导,采用微服务架构和测井分布式云计算技术体系,研发测井大数据存储管理、中间服务层和云端测井处理解释应用等新功能,形成了大庆油田测井数智云应用平台。目前,平台已全面安装部署到大庆油田相关单位,应用效果显著。特别在大庆油田智能决策中心,平台直接用于重点水平井随钻地质导向的现场决策,大幅提升了Ⅰ类储层的钻遇率。未来平台将重点围绕新功能研发、油田数智化应用场景建设和标准化技术体系构建等开展工作,并将取得的成果及时推广复制到西南油田、塔里木油田等油气田。CIFLog云平台作为中国油气工业软件数智化建设应用的先行典范,必将发挥越来越重要的示范引领作用。 展开更多
关键词 大庆油田 CIFlog测井数智云平台 大数据 人工智能 微服务架构 分布式云计算
在线阅读 下载PDF
Application of Seismic Inversion Using Logging Data as Constraints in Coalfield 被引量:3
6
作者 许永忠 潘冬明 +1 位作者 张宝水 崔若飞 《Journal of China University of Mining and Technology》 2004年第1期22-25,共4页
Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural ... Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation. 展开更多
关键词 seismic data inversion CUSI neural network wave impedance logging data thin coal seams
在线阅读 下载PDF
THE METHOD OF ORIGINAL LOGGING DATA PROCESSING BASED ON VBA
7
作者 于浩洋 谢传礼 +2 位作者 张航 王强 张慧 《石油工业计算机应用》 2014年第1期3-4,3,共2页
目前主流测井仪器生成的ASCII、LAS、WIS文件格式,在卡奔BendlinkEx等测井解释软件中无法直接加载。以处理LAS文件以适应卡奔导入要求为例,介绍以ExcelBVA为基础的测井数据处理方法。利用VBA进行编程,首先通过“格式化格式”函数处... 目前主流测井仪器生成的ASCII、LAS、WIS文件格式,在卡奔BendlinkEx等测井解释软件中无法直接加载。以处理LAS文件以适应卡奔导入要求为例,介绍以ExcelBVA为基础的测井数据处理方法。利用VBA进行编程,首先通过“格式化格式”函数处理单个文件,删除卡奔软件加载时多余的信息,保留测井作业范围上各种曲线每个采点上的数值,并生成TxT文件;然后利用“批量处理”函数,对工区所有测井LAS文件进行批量处理,完成测井解释数据准备工作。该方法极大的降低了重复性数据操作,减少了人工参与和人为错误的发生,提高了工作效率,对从事地球物理和地质开发研究的人有重要意义。 展开更多
关键词 摘要 编辑部 编辑工作 读者
在线阅读 下载PDF
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization 被引量:1
8
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
在线阅读 下载PDF
Logging Data High-Resolution Sequence Stratigraphy
9
作者 李洪奇 谢寅符 +1 位作者 孙中春 罗兴平 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期173-180,共8页
The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed... The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed sets on the basis of manifold logging data. The formation of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude are considered on the basis of log curve morphological characteristics, core observation, cast thin section, X-ray diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m, increasing on weathering crusts and faults. Calcareous interbeds occur at the bottom of a distributary channel and the top of a distributary mouth bar. Lower resistivity shale (4-5 Ω · m) and higher resistivity shale (〉 10Ω·m) reflect differences in sediment fountain or sediment microfacies. Reservoir resistivity increases with altitude. Calcareous interbeds may be a symbol of recognition for the boundary of bed sets and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. Based on this, a high-resolution chronostratigraphic frame- work of Xi-1 segment in Shinan area, Junggar basin is presented, and the connectivity of bed sets and oil-water contact is confirmed. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are qualitatively and quantitatively described. 展开更多
关键词 Junggar basin logging data sequence stratigraphy calcareous interbeds shale resistivity relationship of resistivity to altitude reservoir connectivity.
在线阅读 下载PDF
Reservoir heterogeneity and fracture parameter determination using electrical image logs and petrophysical data(a case study, carbonate Asmari Formation, Zagros Basin, SW Iran) 被引量:12
10
作者 Ghasem Aghli Reza Moussavi-Harami Ruhangiz Mohammadian 《Petroleum Science》 SCIE CAS CSCD 2020年第1期51-69,共19页
Assessment of reservoir and fracture parameters is necessary to optimize oil production,especially in heterogeneous reservoirs.Core and image logs are regarded as two of the best methods for this aim.However,due to co... Assessment of reservoir and fracture parameters is necessary to optimize oil production,especially in heterogeneous reservoirs.Core and image logs are regarded as two of the best methods for this aim.However,due to core limitations,using image log is considered as the best method.This study aims to use electrical image logs in the carbonate Asmari Formation reservoir in Zagros Basin,SW Iran,in order to evaluate natural fractures,porosity system,permeability profile and heterogeneity index and accordingly compare the results with core and well data.The results indicated that the electrical image logs are reliable for evaluating fracture and reservoir parameters,when there is no core available for a well.Based on the results from formation micro-imager(FMI)and electrical micro-imager(EMI),Asmari was recognized as a completely fractured reservoir in studied field and the reservoir parameters are mainly controlled by fractures.Furthermore,core and image logs indicated that the secondary porosity varies from 0%to 10%.The permeability indicator indicates that zones 3 and 5 have higher permeability index.Image log permeability index shows a very reasonable permeability profile after scaling against core and modular dynamics tester mobility,mud loss and production index which vary between 1 and 1000 md.In addition,no relationship was observed between core porosity and permeability,while the permeability relied heavily on fracture aperture.Therefore,fracture aperture was considered as the most important parameter for the determination of permeability.Sudden changes were also observed at zones 1-1 and 5 in the permeability trend,due to the high fracture aperture.It can be concluded that the electrical image logs(FMI and EMI)are usable for evaluating both reservoir and fracture parameters in wells with no core data in the Zagros Basin,SW Iran. 展开更多
关键词 FMI and EMI IMAGE logS Porosity and permeability FRACTURES Core data Heterogeneity index
在线阅读 下载PDF
Design and Implementation of a Photovoltaic Data Acquisition System for Some Meteorological Variables
11
作者 Nicholas N. Tasie Friday B. Sigalo +1 位作者 Valentine B. Omubo-Pepple Chigozie Israel-Cookey 《Energy and Power Engineering》 CAS 2022年第11期652-668,共17页
In this paper we have developed a data logging and monitoring system, we validated the system by comparing the result from it with the existing one and found that the system performs slightly better than the existing ... In this paper we have developed a data logging and monitoring system, we validated the system by comparing the result from it with the existing one and found that the system performs slightly better than the existing work in the same area. This implies that the data logger and monitoring system is good and can be used to monitor solar energy variables even at the comfort of our homes. We fitted a model to the generated data and found that the meteorological variables considered accounted for 99.88% of the power output in the rainy seasons while 0.12% of the variation was not explained due to other factors. Solar panels inclined at an angle of 5&deg; (Tilt) and facing South Pole perform optimally. 展开更多
关键词 data logging and Monitoring System Circuit Design Development Chip Programming and Software Development Photovoltaic Cell Meteorological Parameters
在线阅读 下载PDF
HiLog:OpenHarmony的高性能日志系统
12
作者 吴圣垚 王枫 +4 位作者 武延军 凌祥 屈晟 罗天悦 吴敬征 《软件学报》 EI CSCD 北大核心 2024年第4期2055-2075,共21页
日志是计算机系统中记录事件状态信息的的重要载体,日志系统负责计算机系统的日志生成、收集和输出.OpenHarmony是新兴的、面向全设备、全场景的开源操作系统.在所述工作之前,包括日志系统在内OpenHarmony有许多关键子系统尚未构建,而Op... 日志是计算机系统中记录事件状态信息的的重要载体,日志系统负责计算机系统的日志生成、收集和输出.OpenHarmony是新兴的、面向全设备、全场景的开源操作系统.在所述工作之前,包括日志系统在内OpenHarmony有许多关键子系统尚未构建,而OpenHarmony的开源特性使第三方开发者可以为其贡献核心代码.为了解决Open Harmony日志系统缺乏的问题,主要开展如下工作:(1)分析当今主流日志系统的技术架构和优缺点;(2)基于OpenHarmony操作系统的异构设备互联特性设计HiLog日志系统模型规范;(3)设计并实现第1个面向OpenHarmony的日志系统HiLog,并贡献到OpenHarmony主线;(4)对HiLog日志系统的关键指标进行测试和对比试验.实验数据表明,在基础性能方面,HiLog和Log的日志写入阶段吞吐量分别为1500 KB/s和700 KB/s,相比Android日志系统吞吐量提升114%;在日志持久化方面,HiLog可以3.5%的压缩率进行持久化,并且丢包率小于6‰,远低于Log.此外,HiLog还具备数据安全、流量控制等新型实用能力. 展开更多
关键词 操作系统 日志系统 开源软件 数据安全 流量控制
在线阅读 下载PDF
An Interpretation of Multi-pole Sonic Logging Data Mining Based on Rough Sets
13
作者 ZENG Xiao-hui SHI Yi-bing LIAN Yi 《通讯和计算机(中英文版)》 2007年第1期8-10,共3页
关键词 声波测井 数据挖掘 数值模拟 油田
在线阅读 下载PDF
Application of wavelet neural network in the acoustic logging-while-drilling waveform data processing
14
作者 ZHANG Wei SHI Yi-bing 《通讯和计算机(中英文版)》 2007年第8期29-34,共6页
关键词 小波神经网络 数据压缩 随钻声波测井技术 波形数据 油田
在线阅读 下载PDF
Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria
15
作者 Godwin Emujakporue Cyril Nwankwo Leonard Nwosu 《International Journal of Geosciences》 2012年第4期872-877,共6页
Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretatio... Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretation to produce sub-surface structure map. Geophysical well log signatures were employed in identifying hydrocarbon bearing sand. The well-to-seismic tie revealed that the reservoir tied directly with hydrocarbon indicator (bright spot) on the seismic sections. The major structure responsible for the hydrocarbon entrapment is anticline. The crest of the anticline from the depth structural map occurs at 3450 metres. 展开更多
关键词 Seismic data Well logS PROSPECT NIGER Delta
在线阅读 下载PDF
FMLogs:基于模板匹配的日志解析方法
16
作者 章一磊 张广泽 +1 位作者 龚声望 苑淑晴 《计算机应用研究》 CSCD 北大核心 2024年第8期2461-2466,共6页
日志主要记录软硬件的运行信息,通过查看系统日志,可以找到系统出现的问题及原因,确保系统的稳定性和正常运行。日志解析的目的是将半结构化的原始日志解析为可阅读的日志模板,现有解析方法往往只注重于对原始日志的解析,而忽略了后期... 日志主要记录软硬件的运行信息,通过查看系统日志,可以找到系统出现的问题及原因,确保系统的稳定性和正常运行。日志解析的目的是将半结构化的原始日志解析为可阅读的日志模板,现有解析方法往往只注重于对原始日志的解析,而忽略了后期模板处理,导致结果的精度不能进一步提高。自此,提出了一种日志解析方法FMLogs(logs parsing based on frequency and MinHash algorithm)。该方法通过设计正则表达式和调节阈值参数以获得最佳性能,同时采用了字符级频率统计和MinHash方法对长度相同和不同的日志模板进行合并。FMLogs在七个真实数据集上进行了广泛的实验,取得了0.924的平均解析准确率和0.983的F 1-Score。实验结果表明,FMLogs是一种有效的日志解析方法,在解析日志的同时具有较高的准确性和效率,并能保证性能的稳定。 展开更多
关键词 日志分析 解析方法 数据分析
在线阅读 下载PDF
Transfer learning for well logging formation evaluation using similarity weights
17
作者 Binsen Xu Zhou Feng +6 位作者 Jun Zhou Rongbo Shao Hongliang Wu Peng Liu Han Tian Weizhong Li Lizhi Xiao 《Artificial Intelligence in Geosciences》 2024年第1期294-309,共16页
Machine learning has been widely applied in well logging formation evaluation studies.However,several challenges negatively impacted the generalization capabilities of machine learning models in practical imple-mentat... Machine learning has been widely applied in well logging formation evaluation studies.However,several challenges negatively impacted the generalization capabilities of machine learning models in practical imple-mentations,such as the mismatch of data domain between training and testing datasets,imbalances among sample categories,and inadequate representation of data model.These issues have led to substantial insufficient identification for reservoir and significant deviations in subsequent evaluations.To improve the transferability of machine learning models within limited sample sets,this study proposes a weight transfer learning framework based on the similarity of the labels.The similarity weighting method includes both hard weights and soft weights.By evaluating the similarity between test and training sets of logging data,the similarity results are used to estimate the weights of training samples,thereby optimizing the model learning process.We develop a double experts’network and a bidirectional gated neural network based on hierarchical attention and multi-head attention(BiGRU-MHSA)for well logs reconstruction and lithofacies classification tasks.Oil field data results for the shale strata in the Gulong area of the Songliao Basin of China indicate that the double experts’network model performs well in curve reconstruction tasks.However,it may not be effective in lithofacies classification tasks,while BiGRU-MHSA performs well in that area.In the study of constructing large-scale well logging processing and formation interpretation models,it is maybe more beneficial by employing different expert models for combined evaluations.In addition,although the improvement is limited,hard or soft weighting methods is better than unweighted(i.e.,average-weighted)in significantly different adjacent wells.The code and data are open and available for subsequent studies on other lithofacies layers. 展开更多
关键词 logging data sample similarity Weighted loss optimization Weight transfer learning
在线阅读 下载PDF
基于机器学习的网络安全日志数据挖掘系统的设计与研究
18
作者 施勇 《通化师范学院学报》 2025年第2期47-53,共7页
针对局域网网络安全攻击问题,提出一种基于数据挖掘技术的创新解决路径.通过集成Python、Java编程语言,结合MySQL数据库管理系统,运用以决策树算法为核心的数据挖掘策略,模拟并实现一个智能化的机器学习驱动网络安全日志动态挖掘系统.... 针对局域网网络安全攻击问题,提出一种基于数据挖掘技术的创新解决路径.通过集成Python、Java编程语言,结合MySQL数据库管理系统,运用以决策树算法为核心的数据挖掘策略,模拟并实现一个智能化的机器学习驱动网络安全日志动态挖掘系统.该系统能够实现网络安全态势的数据挖掘与安全预测的功能,提高网络安全监测和预警的准确性和效率,为局域网网络安全环境的实时响应与策略调整提供技术支持. 展开更多
关键词 机器学习 网络安全日志 数据挖掘 决策树
在线阅读 下载PDF
△logR技术改进及其在烃源岩评价中的应用 被引量:41
19
作者 刘超 卢双舫 +1 位作者 黄文彪 王伟明 《大庆石油地质与开发》 CAS CSCD 北大核心 2011年第3期27-31,共5页
利用测井资料计算岩石中有机碳含量是烃源岩评价中的重要研究领域。此前的△logR方法以固定的叠合系数将声波时差和电阻率曲线叠合,确定基线位置后需读取基线值计算△logR,操作过程繁琐且影响计算精度,同时主观确定有机碳含量背景值... 利用测井资料计算岩石中有机碳含量是烃源岩评价中的重要研究领域。此前的△logR方法以固定的叠合系数将声波时差和电阻率曲线叠合,确定基线位置后需读取基线值计算△logR,操作过程繁琐且影响计算精度,同时主观确定有机碳含量背景值误差较大。研究发现,△logR方法计算有机碳含量的精度受声波时差和电阻率间叠合系数影响,并从理论上解释了原因。为此,对原有模型改进,实现自动优选叠合系数,在缺少成熟度参数、无需人为确定有机碳含量背景值及基线值情况下,通过计算机快速、准确地计算有机碳含量。改进模型在海拉尔盆地及松辽盆地的应用结果表明,改进方法使计算有机碳含量与实测有机碳含量相关度达到最高,且方法简单,具有广’泛的应用前景。 展开更多
关键词 烃源岩 测井信息 有机碳含量 logR 改进 叠合系数
在线阅读 下载PDF
改进评价生油岩有机质含量的CARBOLOG法及其初步应用 被引量:10
20
作者 刘俊民 彭平安 +1 位作者 黄开权 张林晔 《地球化学》 CAS CSCD 北大核心 2008年第6期581-586,共6页
对法国石油研究院利用测井资料计算烃源岩有机碳含量的CARBOLOG法的原理进行了剖析,推导出利用声波测井及电阻率测井资料计算总有机碳含量的理论关系式,弥补了CARBOLOG法利用电测资料作图评价有机质丰度的不足,较大程度地改进了方法的... 对法国石油研究院利用测井资料计算烃源岩有机碳含量的CARBOLOG法的原理进行了剖析,推导出利用声波测井及电阻率测井资料计算总有机碳含量的理论关系式,弥补了CARBOLOG法利用电测资料作图评价有机质丰度的不足,较大程度地改进了方法的可操作性。以取芯较好的牛38井分析测试资料为基础,进行回归计算,标定了理论关系式的相应系数,相关系数为0.90,该成果在东科1、丰112、富15等井的生油岩评价中得了到进一步的检验。 展开更多
关键词 烃源岩 CARBOlog 电测资料 总有机碳含量 改进
在线阅读 下载PDF
上一页 1 2 135 下一页 到第
使用帮助 返回顶部