期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic response of high-speed railway vehicle and welded turnout on large-span bridges based on rigid-flexible coupling system
1
作者 Xiaopei Cai Zijie Zhong +2 位作者 Albert Lau Qian Zhang Yue Hou 《High-Speed Railway》 2024年第4期203-218,共16页
Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of ... Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system. 展开更多
关键词 High-speed railway Welded turnout large-span bridge Dynamic response Rigid-flexible coupling system
在线阅读 下载PDF
Dynamic Reliability Assessment of Heavy Vehicle Crossing a Prototype Bridge Deck by Using Simulation Technology and Health Monitoring Data
2
作者 Yinghua Li Junyong He +1 位作者 Xiaoqing Zeng Yanxing Tang 《Journal of Architectural Environment & Structural Engineering Research》 2022年第4期10-17,共8页
Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitor... Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges. 展开更多
关键词 large-span continuous rigid frame bridge Heavy vehicle Dynamic reliability evaluation SHM Finite element simulation technology
在线阅读 下载PDF
Study on the Mechanical Performance of Wet Concrete Joints in Large-Span Composite Steel-Concrete Cable-Stayed Bridges
3
作者 Yang Wang Zhe Wu +1 位作者 Kaixing Zhang Youzhi Wang 《Structural Durability & Health Monitoring》 2025年第3期613-642,共30页
A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests... A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model. 展开更多
关键词 large-span cable-stayed bridges steel-concrete composite girders wet joints mechanical performance cooperative working performance in-situ tests finite element analysis
在线阅读 下载PDF
Seismic performance evaluation of large-span offshore cable-stayed bridges under non-uniform earthquake excitations including strain rate effect 被引量:4
4
作者 LI Chao LI HongNan +3 位作者 ZHANG Hao SU JunSheng LI RouHan DING YiMing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1177-1187,共11页
This paper presents a novel and precise seismic performance evaluation method for large-span offshore cable-stayed(LSOCS)bridge by considering the strain rate effect of RC materials and the spatial variation effect of... This paper presents a novel and precise seismic performance evaluation method for large-span offshore cable-stayed(LSOCS)bridge by considering the strain rate effect of RC materials and the spatial variation effect of seafloor seismic motions. Threedimensional finite element(FE) model of a LSOCS bridge located in the southeast coast of China is constructed in the ABAQUS platform. The non-uniform ground motions at the offshore site beneath the bridge are stochastically simulated and used as seismic inputs. Moreover, a subroutine for considering the rate-dependent properties of RC materials in a fiber-based beamcolumn element model is developed to account for the strain rate effect of RC materials in the nonlinear time-history analysis.The numerical results indicate that seismic responses and fragilities of the LSOCS bridge are both considerably affected by the non-uniform seafloor seismic motions and strain rate effect. The seismic performance evaluation approach presented in this paper can provide vital support for earthquake resistant design of LSOCS bridges. 展开更多
关键词 large-span offshore cable-stayed bridges spatially varying seafloor seismic motions strain rate effect seismic fragility
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部