In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these t...In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.展开更多
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen...There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.展开更多
Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to ...Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to describe plasticity directly using the classical plastic theory.To address the above issue,a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems.Compared to the existing models,the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means.The results obtained in the context of this model are shown to be consistent with FEM results in regard to force-displacement curves,displacement fields,stress fields,and plastic deformation regions.The model exhibits good capability of capturing crack propagation in ductile material failure problems.展开更多
The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately pr...The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of confining/consolidation pressures.The issue stems from the pressure independent hardening law in the classical deviatoric hardening model.To overcome this problem,we propose a refined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations.Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various confining/consolidation pressure conditions for both dense and loose sands.Furthermore,to examine the importance of the improved deviatoric hardening model,it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures.It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials.展开更多
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b...In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.展开更多
The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and...The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness.展开更多
Recently,an article on ^(1)H solid-state NMR spectra was published,in which the authors proposed a deep learning approach to infer the pure isotropic proton NMR spectra obtained at an infinite magic angle spinning(MAS...Recently,an article on ^(1)H solid-state NMR spectra was published,in which the authors proposed a deep learning approach to infer the pure isotropic proton NMR spectra obtained at an infinite magic angle spinning(MAS)rate.This approach even allowed to obtain,by far,the best resolved ^(1)H spectra of molecular solids[1](https://doi.org/10.1002/anie.202216607).Deep learning based artificial intelligence is developing rapidly,and its application is deepening.Currently,there are many applications of deep learning in the field of magnetic resonance,such as the reconstruction of the under-sampled multidimensional spectra[2-4],the deconvolution of two-dimensional NMR spectra[5]and noise suppression and weak peak retrial[6],etc.展开更多
The isotropic continuum stored energy (CSE) functional, fully combined with the Poisson function, has been applied to constitutively model compressible as well as incompressible rubberlike materials. The isotropic CSE...The isotropic continuum stored energy (CSE) functional, fully combined with the Poisson function, has been applied to constitutively model compressible as well as incompressible rubberlike materials. The isotropic CSE constitutive model fits uniaxial tension test and predicts unfitted pure shear and equibiaxial tension tests of incompressible S4035A thermoplastic elastomer (TPE). Furthermore, the isotropic CSE model along with the Poisson function fits uniaxial tension test along with the kinematic relation test and predicts unfitted pure shear and equibiaxial tension tests along with the corresponding kinematic relation tests of a compressible synthetic rubber. The detailed procedures for uniquely identifying constitutive parameters are emphasized, the experimental characterization results are discussed, and the principles for constitutive models are summarized and augmented.展开更多
为获得高速动车齿轮箱最优结构设计方案,针对目前国产高速动车牵引齿轮箱箱体特点及存在的问题,基于SIMP(solid isotropic material with penalization)材料插值模型及应变能理论,利用软件HyperMesh中的拓扑优化与形状优化模块对动车齿...为获得高速动车齿轮箱最优结构设计方案,针对目前国产高速动车牵引齿轮箱箱体特点及存在的问题,基于SIMP(solid isotropic material with penalization)材料插值模型及应变能理论,利用软件HyperMesh中的拓扑优化与形状优化模块对动车齿轮箱箱体结构进行拓扑优化和局部形状优化。优化结果表明:优化后的动车齿轮箱结构的最大变形和最大应力有大幅度降低,能有效提高齿轮箱箱体的刚度和强度。文中结果可为设计性能优异的国产化高速动车齿轮箱提供数据支持。展开更多
To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order vel...To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.展开更多
The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize...The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.展开更多
A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of str...A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.展开更多
A series of experiments were pertbrmed to determine rock mechanical parameters related to hydraulic fracturing of coal. The effect of confining pressure and pore pressure on the strength of coal was stt, died. Experim...A series of experiments were pertbrmed to determine rock mechanical parameters related to hydraulic fracturing of coal. The effect of confining pressure and pore pressure on the strength of coal was stt, died. Experimental results show that the coal seam in the study areas has a relatively low elastic modulus, high Poisson's ratio, high fragility and is easily broken and compressed. The coal seam is considered as a transversely isotropic medium, since the physical properties in the direction of bedding plane and orthogonal to the bedding plane vary markedly. Based on the generalized plane strain model, stress distribution for an arbitrarily orientated wellbore in the coal seam was determined. In a horizontal well, hydraulic fracturing was lbund to initiate in the coal seam mass due to tensile failure, or from cleats due to shear or tensile failure. For those coal seams with abundant natural cleats, hydraulic fracture initiation can be induced by any of these mechanisms. In this study, hydraulic fracture initiation criteria tbr a horizontal well in a coal seam were established.展开更多
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic character...The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.展开更多
In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is st...In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.展开更多
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, th...This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.展开更多
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial d...This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).展开更多
The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of ...The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.展开更多
文摘In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0058)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120041)。
文摘There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.
基金The corresponding author Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267)The corresponding author Xin Lai acknowledges the support from the National Natural Science Foundation of China(No.11802214).
文摘Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to describe plasticity directly using the classical plastic theory.To address the above issue,a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems.Compared to the existing models,the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means.The results obtained in the context of this model are shown to be consistent with FEM results in regard to force-displacement curves,displacement fields,stress fields,and plastic deformation regions.The model exhibits good capability of capturing crack propagation in ductile material failure problems.
基金the funding support from Basic Science Center Program for Multiphase Media Evolution in Hypergravity of the National Natural Science Foundation of China(Grant No.51988101).
文摘The classical deviatoric hardening models are capable of characterizing the mechanical response of granular materials for a broad range of degrees of compaction.This work finds that it has limitations in accurately predicting the volumetric deformation characteristics under a wide range of confining/consolidation pressures.The issue stems from the pressure independent hardening law in the classical deviatoric hardening model.To overcome this problem,we propose a refined deviatoric hardening model in which a pressure-dependent hardening law is developed based on experimental observations.Comparisons between numerical results and laboratory triaxial tests indicate that the improved model succeeds in capturing the volumetric deformation behavior under various confining/consolidation pressure conditions for both dense and loose sands.Furthermore,to examine the importance of the improved deviatoric hardening model,it is combined with the bounding surface plasticity theory to investigate the mechanical response of loose sand under complex cyclic loadings and different initial consolidation pressures.It is proved that the proposed pressure-dependent deviatoric hardening law is capable of predicting the volumetric deformation characteristics to a satisfactory degree and plays an important role in the simulation of complex deformations for granular geomaterials.
基金Supported by the National Natural Science Foundation of China(11771020,12171005).
文摘In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.
基金financially supported by the Sichuan Science and Technology Program (Grant No. 2023ZYD0158)the National Natural Science Foundation of China (Grant Nos. 42304147 and 42304076)。
文摘The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness.
基金This work was partially supported by the National Natural Science Foundation of China(Grants 22174118 and 22374124).
文摘Recently,an article on ^(1)H solid-state NMR spectra was published,in which the authors proposed a deep learning approach to infer the pure isotropic proton NMR spectra obtained at an infinite magic angle spinning(MAS)rate.This approach even allowed to obtain,by far,the best resolved ^(1)H spectra of molecular solids[1](https://doi.org/10.1002/anie.202216607).Deep learning based artificial intelligence is developing rapidly,and its application is deepening.Currently,there are many applications of deep learning in the field of magnetic resonance,such as the reconstruction of the under-sampled multidimensional spectra[2-4],the deconvolution of two-dimensional NMR spectra[5]and noise suppression and weak peak retrial[6],etc.
文摘The isotropic continuum stored energy (CSE) functional, fully combined with the Poisson function, has been applied to constitutively model compressible as well as incompressible rubberlike materials. The isotropic CSE constitutive model fits uniaxial tension test and predicts unfitted pure shear and equibiaxial tension tests of incompressible S4035A thermoplastic elastomer (TPE). Furthermore, the isotropic CSE model along with the Poisson function fits uniaxial tension test along with the kinematic relation test and predicts unfitted pure shear and equibiaxial tension tests along with the corresponding kinematic relation tests of a compressible synthetic rubber. The detailed procedures for uniquely identifying constitutive parameters are emphasized, the experimental characterization results are discussed, and the principles for constitutive models are summarized and augmented.
文摘为获得高速动车齿轮箱最优结构设计方案,针对目前国产高速动车牵引齿轮箱箱体特点及存在的问题,基于SIMP(solid isotropic material with penalization)材料插值模型及应变能理论,利用软件HyperMesh中的拓扑优化与形状优化模块对动车齿轮箱箱体结构进行拓扑优化和局部形状优化。优化结果表明:优化后的动车齿轮箱结构的最大变形和最大应力有大幅度降低,能有效提高齿轮箱箱体的刚度和强度。文中结果可为设计性能优异的国产化高速动车齿轮箱提供数据支持。
基金supported by the National High-Tech Research and Development Program of China(Grant No.2006AA06Z202)the Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金the Graduate Student Innovation Fund of China University of Petroleum(East China)(Grant No.S2008-1)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
文摘The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.
基金Project(51475483)supported by the National Natural Science Foundation of ChinaProject(2014FJ3002)supported by Science and Technology Project of Hunan Province,ChinaProject supported by Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.
基金the financial support from the National Natural Science Foundation of China(No.51204195,No.51074171 and No.51274216)
文摘A series of experiments were pertbrmed to determine rock mechanical parameters related to hydraulic fracturing of coal. The effect of confining pressure and pore pressure on the strength of coal was stt, died. Experimental results show that the coal seam in the study areas has a relatively low elastic modulus, high Poisson's ratio, high fragility and is easily broken and compressed. The coal seam is considered as a transversely isotropic medium, since the physical properties in the direction of bedding plane and orthogonal to the bedding plane vary markedly. Based on the generalized plane strain model, stress distribution for an arbitrarily orientated wellbore in the coal seam was determined. In a horizontal well, hydraulic fracturing was lbund to initiate in the coal seam mass due to tensile failure, or from cleats due to shear or tensile failure. For those coal seams with abundant natural cleats, hydraulic fracture initiation can be induced by any of these mechanisms. In this study, hydraulic fracture initiation criteria tbr a horizontal well in a coal seam were established.
基金supported by the "111" Project of China (Grant No. B07019)State Key Laboratory of Ocean Engineeringof Shanghai Jiao Tong University (Grant No. 1008)the Fundamental Research Funds for the Central University
文摘The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
基金the National Natural Science Foundation of China (Grant 11772128)the Fundamental Research Funds for the Central Universities (Grants 2017MS022 and 2018ZD09).
文摘In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.
基金The 111 Project under Grant No.B13024the National Natural Science Foundation of China under Grant Nos.U1134207 and 51378177the Program for New Century Excellent Talents in University under Grant No.NCET-12-0843
文摘This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.
基金Project (Nos. 10472102 and 10432030) supported by the NationalNatural Science Foundation of China
文摘This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
文摘The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.