期刊文献+
共找到1,866篇文章
< 1 2 94 >
每页显示 20 50 100
Highly dispersed MoO_(x)-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes
1
作者 Xincheng Cao Jiaping Zhao +5 位作者 Feng Long Peng Liu Yuguo Dong Zupeng Chen Junming Xu Jianchun Jiang 《Chinese Journal of Catalysis》 2025年第4期256-266,共11页
The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction tempera... The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products. 展开更多
关键词 bimetallic catalyst Interface engineering HYDRODEOXYGENATION Fatty esters Diesel-range alkanes
在线阅读 下载PDF
Synthesis of intermetallic PtCo fuel cell catalysts from bimetallic core@shell structured nanoparticles
2
作者 Le Zhang Lei Tong +3 位作者 Shuai Li Chang-Song Ma Kun-Ze Xue Hai-Wei Liang 《Journal of Energy Chemistry》 2025年第2期1-6,I0001,共7页
The high activity and stability of intermetallic PtCo nanocatalysts toward oxygen reduction reaction make them a top candidate as low-Pt cathode catalysts in proton exchange membrane fuel cells(PEMFCs).However,forming... The high activity and stability of intermetallic PtCo nanocatalysts toward oxygen reduction reaction make them a top candidate as low-Pt cathode catalysts in proton exchange membrane fuel cells(PEMFCs).However,forming intermetallic structures typically requires high-temperature annealing,posing a challenge for achieving well-size control and highly ordered structures.Here we report the design and synthesis of bimetallic co re@shell structured precursors for affording high-performance intermetallic PtCo catalysts.The fabrication of the core@shell precursor involves using a molecular ligand containing both sulfur and oxygen donors to selectively bind with Pt colloidal nanoparticles as the core and chelate Co ions as the shell.During high-temperature annealing,the ligand transforms into carbon coatings around alloy nanoparticles,preventing particle sintering;meanwhile,Co ions in the shell can easily diffuse into the Pt core,which helps to increase the thermodynamic driving force for forming intermetallic structures.These benefits enable us to obtain the catalyst with finely dispersed nanoparticles(~3.5 nm)and a high ordering degree of 72%.With 0.1 mgPt/cm^(2)cathode loading,the catalyst delivers superior performance and durability in PEMFCs,showing an initial mass activity of 0.56 A/mgPt,an initial power density of 1.05 W/cm^(2)at 0.67 V(H_(2)-air),and a voltage loss of 26 mV at 0.8 A/cm^(2)after the accelerated durability test. 展开更多
关键词 Intermetallic PtCo Oxygen reduction reaction bimetallic structure Fuel cells
在线阅读 下载PDF
Synergistic Enhancement of Mechanical Properties and Electrical Conductivity of Immiscible Bimetal:A Case Study on W–Cu
3
作者 Qixiang Duan Chao Hou +4 位作者 Tielong Han Yurong Li Haibin Wang Xiaoyan Song Zuoren Nie 《Engineering》 2025年第3期224-235,共12页
Immiscible bimetal systems,of which tungsten–copper(W–Cu)is a typical representative,have crucial applications in fields requiring both mechanical and physical properties.Nevertheless,it is a major challenge to dete... Immiscible bimetal systems,of which tungsten–copper(W–Cu)is a typical representative,have crucial applications in fields requiring both mechanical and physical properties.Nevertheless,it is a major challenge to determine how to give full play to the advantages of the two phases of the bimetal and achieve outstanding comprehensive properties.In this study,an ultrafine-grained W–Cu bimetal with spatially connected Cu and specific Wislands was fabricated through a designed powder-mixing process and subsequent rapid low-temperature sintering.The prepared bimetal concurrently has a high yield strength,large plastic strain,and high electrical conductivity.The stress distribution and strain response of individual phases in different types of W–Cu bimetals under loading were quantified by means of a simulation.The high yield strength of the reported bimetal results from the microstructure refinement and high contiguity of the grains in the W islands,which enhance the contribution of W to the total plastic deformation of the bimetal.The high electrical conductivity is attributed to the increased mean free path of the Cu and the reduced proportion of phase boundaries due to the specific phase combination of W islands and Cu.This work provides new insight into modulating phase configuration in immiscible metallic composites to achieve high-level multi-objective properties. 展开更多
关键词 Immiscible bimetal Phase configuration Mechanical property Electrical conductivity Strain response
在线阅读 下载PDF
Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation
4
作者 Yuling Ma Dongqing Liu +4 位作者 Tao Zhang Chengjie Song Dongmei Liu Peizhi Wang Wei Wang 《Chinese Chemical Letters》 2025年第3期151-155,共5页
Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water d... Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water deteriorates the distillate quality,threatening human health.Herein,we constructed a carbonbased bimetallic(C/FeCo)photothermal membrane by electrospinning technique.Results illustrated that the membrane can catalytically degrade VOCs during SIE with persulfate(PDS)mediation.PDS,as well as phenol,was mainly reacted on the interface of the photothermal membrane instead of in the bulk solution.The interception efficiency of phenol achieved nearly 100%using the C/FeCo membrane during SIE.Hydroxyl radical(•OH),sulfate radical(SO_(4)•−),superoxide radical(O_(2)•−),and singlet oxygen(^(1)O_(2))were identified as the main active substances to degrade VOCs.We also conducted SIE experiments using actual river water to evaluate the practical performance of the C/FeCo membrane.This work holds the promise of VOCs interception during SIE and enlarges the application of solar distillation in water/wastewater treatment. 展开更多
关键词 Solar distillation Interfacial evaporation Volatile organic compounds bimetallic composite carbon fiber Persulfate mediation
原文传递
Bimetallic Ni_(x)Fe_(2-x)P cocatalyst with tunable electronic structure for enhanced photocatalytic benzyl alcohol oxidation coupled with H_(2)evolution over red phosphorus
5
作者 Shuang Li Haili Lin +5 位作者 Xuemei Jia Xin Jin Qianlong Wang Xinyue Li Shifu Chen Jing Cao 《Chinese Journal of Catalysis》 2025年第3期363-377,共15页
Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely bee... Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts. 展开更多
关键词 bimetallic phosphides cocatalyst Composition regulation Red phosphorus Selective oxidation of benzyl alcohol H_(2)
在线阅读 下载PDF
Effects of the Different Supports on the Activity and Selectivity of Iron-Cobalt Bimetallic Catalyst for Fischer-Tropsch Synthesis 被引量:3
6
作者 Xiangdong Ma Qiwen Sun +2 位作者 Fahai Cao Weiyong Ying Dingye Fang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期335-339,共5页
Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-program... Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports. 展开更多
关键词 Fischer-Tropsch synthesis bimetallic catalyst iron COBALT support silica ALUMINA active carbon SYNGAS
在线阅读 下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization 被引量:1
7
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED bimetalLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
在线阅读 下载PDF
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation 被引量:1
8
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts bimetallic catalysts Biomass valorization Electrocatalyst synthesis
在线阅读 下载PDF
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
9
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction FORMATE oxygen vacancy wide potential window
在线阅读 下载PDF
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion 被引量:1
10
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
在线阅读 下载PDF
Confinement and synergy effects of supported-confined bimetal catalysts with superior stability and catalytic activity
11
作者 Yujun Sheng Farah Hazmatulhaq +5 位作者 Abdullah Al Mahmud Mostafa S.Sayed Iftikhar Hussain Stefano Leoni Wail Al Zoubi Young Gun Ko 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期93-99,共7页
Bimetallic nanocrystals have attracted considerable attention because of their complicated systems,which are far superior to those of their individual constituents.A TiO_(2)-confined PtMnP bimetallic catalyst(PtMnP@Ti... Bimetallic nanocrystals have attracted considerable attention because of their complicated systems,which are far superior to those of their individual constituents.A TiO_(2)-confined PtMnP bimetallic catalyst(PtMnP@TiO_(2)) was prepared using an ultrasonic-assisted coincident strategy,which demonstrated exceptional catalytic activity in the universal hydrogen evolution reaction (HER).Owing to the bimetallic synergistic effect and TiO_(2) confinement,PtMnP@TiO_(x)showed ultrasmall metal nanoparticles (NPs),a higher active Pt^(0) content,adequate activation at the porous surface,and abundant acid sites.Simulations were performed to visualize the strain properties of Mn and Pt during the bending process and demonstrate the high activity of Pt.The Pt-Mn bimetallic catalysts were enriched with Pt NPs,convoyed by electron transfer from Mn to Pt.Briefly,PtMnP@TiO_(2) showed robust evolution reaction activities (an overpotential of 220 mV at a current density of 10 mA cm^(-2) and a Tafel slope of 186 mV dec^(-1))and the ability to contrast stated catalysts without ultrasonication-plasma.This protocol revealed that the geometrical and electronic effects of Pt and P surrounding the Mn species in PtMnP@TiO_(2) were crucial for increasing the catalytic activity (99%) and durability (over 20 cycles),which were far superior to those of other reported catalysts. 展开更多
关键词 SYNERGY bimetal Catalyst STABILITY Activity
在线阅读 下载PDF
Plasmon Induced Heat Funneling from Au to Cu in the Bimetallic Au@Cu Core-Shell Nanoparticles
12
作者 Danli Shi Jingyi Yang +5 位作者 Minjie Li Jianchang Lv Xi Liu Ao Liu Shaoshi Guo Yan Wan 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期522-530,I0061-I0066,I0094,共16页
The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot elec... The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot electrons and phonons)transfers on the interface between two metals.We have designed and synthesized Au@Cu bimetallic nanoparticles with Au as core and Cu as shell.By using transient absorption spectroscopy,we find that there are two plasmon induced heat funneling processes from Au core to Cu shell.One is the electron temperature equilibrium(electron heat transfer)with equilibration time of~560 fs.The other is the lattice temperature equilibrium(lattice heat transfer)with equilibration time of~13 ps.This plasmon induced heat funneling may be universal in similar bimetallic nanostructures,so our finding could contribute to further understanding the catalytic mechanism of bimetallic plasmonic photothermal catalysis. 展开更多
关键词 PLASMON Transient absorption bimetallic nanoparticle
在线阅读 下载PDF
Creep properties of bimetal Al/SiC/Cu compositesfabricated via accumulative roll bonding process
13
作者 Basem Ali Jasim Dheyaa J +2 位作者 Bansal Pooja Qasim Maytham T Brisset B.J 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3807-3818,共12页
In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation o... In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses. 展开更多
关键词 creep property intermetallic compounds accumulative roll bonding MICROSTRUCTURE bimetal
在线阅读 下载PDF
The impact of plasmonic Ag−Au bimetallic nanoparticles on photocurrent enhancement in GaN-based photodetectors
14
作者 Thi Kim Oanh Vu Thi Thu Phuong Bui +3 位作者 Ngoc Anh Nguyen Thi Thanh Bao Nguyen Thi Minh Hien Nguyen Eun Kyu Kim 《Journal of Semiconductors》 EI CAS CSCD 2024年第12期72-78,共7页
Recently,there has been considerable interest in high-efficiency ultraviolet(UV)photodetectors for their potential practical uses.In this study,a high-quality UV photodetector was fabricated using a combination of Ag ... Recently,there has been considerable interest in high-efficiency ultraviolet(UV)photodetectors for their potential practical uses.In this study,a high-quality UV photodetector was fabricated using a combination of Ag and Au NPs with GaN film.The GaN film was deposited using sputtering technique,whereas Ag and Au films were grown using thermal evaporation technique.Ag-Au bimetallic nanoparticles were formed by treating them at the various annealing temperature to improve the interaction between light and the photoactive layers of the photodetectors.The optimal annealing temperature to achieve the best performance of a photodetector is 650℃.This led to a photoresponsivity of 98.5 A/W and the ON/OFF ratio of 705 at low bias voltage of 1 V.This work establishes the foundation for the advancement of high-performance UV photodetectors. 展开更多
关键词 UV photodetectors GaN Ag-Au bimetallic nanoparticles plasmonic effect
在线阅读 下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
15
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction bimetallic hydroxides Ag nanoparticle Operando Raman Overall water splitting
在线阅读 下载PDF
Elucidating the structure-activity relationship of Cu-Ag bimetallic catalysts for electrochemical CO_(2) reduction
16
作者 Qining Huang Lili Wan +1 位作者 Qingxuan Ren Jingshan Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期345-351,I0009,共8页
Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo... Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity. 展开更多
关键词 Electrochemical CO_(2)reduction bimetallic catalyst CU-AG Structure-activity relationship
在线阅读 下载PDF
Performance enhancement and active sites identification of Cu-Cd bimetallic oxide derived catalysts for electrochemical CO_(2) reduction
17
作者 Cai Wang Xin Hu +7 位作者 Bairong Chen Houan Ren Xiaoyu Wang Yilin Zhang Xinyu Chen Yuping Liu Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期50-58,共9页
The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ab... The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation. 展开更多
关键词 CO_(2)reduction Cu-Cd bimetallic Real active sites CO production
在线阅读 下载PDF
Strong water-resistant Co-Mn solid solution derived from bimetallic metaleorganic frameworks for catalytic destruction of toluene
18
作者 Juan Lei Ying Huang +3 位作者 Baobao Bai Xiaoli Ren Lijun Cheng Shuang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期142-151,共10页
The construction of CoeMn mixed-metal oxide catalysts derived from bimetallic metaleorganic frameworks(MOFs)has great significance for catalytic destruction of toluene.Hence,a series of Co_(a)Mn_(b)O_(x)-MOFs with dif... The construction of CoeMn mixed-metal oxide catalysts derived from bimetallic metaleorganic frameworks(MOFs)has great significance for catalytic destruction of toluene.Hence,a series of Co_(a)Mn_(b)O_(x)-MOFs with different physicochemical properties were successfully synthesized via pyrolysis of CoeMn bimetallic MOFs.Attributing to the higher specific surface area,more active sites(Co^(3+)and Mn^(3+)),stronger reducibility,and abundant defect sites,the as-prepared Co_(1)Mn_(1)O_(x)-MOFs displayed an optimal catalytic performance,especially the excellent water vapor resistance.The result of the in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated that toluene can be degraded at relatively low temperatures(<100℃).Benzyl alcohol,benzaldehyde,benzoic acid,and maleic anhydride were the main intermediate products in toluene degradation process.This work reveals the value of bimetallic MOFs derived Co-Mn oxides for toluene oxidation and presents a novel avenue for designing mixed-metal oxide catalysts with potential applications in volatile organic compounds(VOCs)catalytic oxidation. 展开更多
关键词 Co-Mn oxide catalyst bimetallic metaleorganic frameworks(MOFs) Catalytic oxidation Water-resistant
在线阅读 下载PDF
Constructing fast mass-transfer channels with efficient catalytic ozonation activity in 2D manganese dioxide membranes by intercalating Fe/Mn bimetallic MOF
19
作者 Dandan Zhou Shilong Li +4 位作者 Luyi Chai Jian Lu Tianxiang Yu Yuqing Sun Wenheng Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期272-286,共15页
Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains ch... Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains challenging for 2D catalytic ozonation membranes to efficiently degrade micropollutants due to low mass-transfer efficiency and poor catalytic activity.Herein,Fe/Mn bimetallic metal-organic framework(MOF)intercalated lamellar MnO_(2) membranes with fast and robust ozone-catalyzed mass-transfer channels were developed on the surface of the hollow fiber ceramic membrane(HFCM)to obtain 2D Fe/Mn-MOF@MnO_(2)-HFCM for efficiently degrading micropollutants in wastewater.The intercalation of Fe/Mn-MOF expanded the interlayer spacing of the MnO_(2) membrane,thereby providing abundant transport channels for rapid passage of water.More notably,the Fe/Mn-MOF provided enriched reactive sites as well as high electron transfer efficiency based on the redox cycling between Mn^(3+)/Mn^(4+) and Fe^(2+)/Fe^(3+),ensuring the effective catalytic oxidative degradation of micropollutants including tetracycline hydrochloride(TCH),methylene blue,and methyl blue.Moreover,the carboxyl groups on the MOF formed covalent bonds(-COO-)with the hydroxyl groups in MnO_(2) between layers,which increased the interaction between MnO_(2) nanosheets to form stable interlayer channels.Specifically,the optimal composite membrane achieved a high removal rate of TCH micropollutant(93.4%),high water treatment capacity(282 L·m^(-2)·h^(-1)·MPa^(-1)),and excellent longterm stability(1200 min).This study provides a simple and easily scalable strategy to construct fast,efficient,and stable 2D catalytic mass-transfer channels for the efficient treatment of micropollutants in wastewater. 展开更多
关键词 Catalytic ozonation Two-dimensional ceramic membranes Fe/Mn bimetallic MOF MICROPOLLUTANTS
在线阅读 下载PDF
Graphene-loaded nickel−vanadium bimetal oxides as hydrogen pumps to boost solid-state hydrogen storage kinetic performance of magnesium hydride
20
作者 Dong-qiang GAO Fu-ying WU +4 位作者 Zhi ZHANG Zi-chuan LU Ren ZHOU Hu ZHAO Liu-ting ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2645-2657,共13页
To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre... To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles. 展开更多
关键词 hydrogen storage properties MgH_(2) graphene-loaded Ni−V bimetal oxides catalytic mechanism
在线阅读 下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部