期刊文献+
共找到2,140篇文章
< 1 2 107 >
每页显示 20 50 100
Effects of oxygen vacancy on bond ionicity,lattice energy,and microwave dielectric properties of CeO_(2) ceramics with Yb^(3+) substitution 被引量:1
1
作者 Mingan Shi Shuyang Ma +3 位作者 Wangsuo Xia Ying Wang Jinzi Yu Haitao Wu 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第2期247-254,共8页
Novel Yb_(x)Ce_(1-x)O_(2-0.5x)(x=0-0.8)ceramics,designed by replacing Ce^(4+)with Yb^(3+)ions were prepared by conventional oxide reaction,and the structural stability of the cubic fluorite structure was assessed usin... Novel Yb_(x)Ce_(1-x)O_(2-0.5x)(x=0-0.8)ceramics,designed by replacing Ce^(4+)with Yb^(3+)ions were prepared by conventional oxide reaction,and the structural stability of the cubic fluorite structure was assessed using lattice energy and ionic properties of Ce/Yb-O bonds.The oxygen vacancy caused by unequal substitution,which played a decisive role in bond ionicity and lattice energy,was analyzed experimentally by XPS and also theoretically by first principles.The Yb_(x)Ce_(1-x)O_(2-0.5x) ceramics maintain a stable cubic fluorite structure when x≤0.47,corresponding to the minimum lattice energy of 4142 kJ/mol with the lowest ionicity as ƒ_(i)=87.57%.For microwave dielectric properties,when the Yb_(x)Ce_(1-x)O_(2-0.5x)(x=0-0.4)ceramics are pure phase,the porosity-corrected permittivity is dependent on the bond ionicity.The Q׃ values are related to the lattice energy and grain distribution.The temperature coefficient of resonance frequency has been analyzed using bond valence.When the Yb_(x)Ce_(1-x)O_(2-0.5x)(x=0.5-0.8)ceramics are multiple phases,the microwave dielectric properties are associated with the phase composition and grain growth. 展开更多
关键词 structure stability bond ionicity oxygen vacancy electronic localization function(ELF)
原文传递
High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries 被引量:14
2
作者 Zhen-Yi Gu Jin-Zhi Guo +7 位作者 Xin-Xin Zhao Xiao-Tong Wang Dan Xie Zhong-Hui Sun Chen-De Zhao Hao-Jie Liang Wen-Hao Li Xing-Long Wu 《InfoMat》 SCIE CAS 2021年第6期694-704,共11页
As a cathode for sodium-ion batteries(SIBs),Na3V2(PO4)2F3(NVPF)with 3D open framework is a promising candidate due to its high working voltage and large theoretical capacity.However,the severe capacity degradation and... As a cathode for sodium-ion batteries(SIBs),Na3V2(PO4)2F3(NVPF)with 3D open framework is a promising candidate due to its high working voltage and large theoretical capacity.However,the severe capacity degradation and poor rate capability hinder its practical applications.The present study demonstrated the optimization of Na-storage performance of NVPF via delicate lattice modulation.Aliovalent substitution of V^(3^(+))at Na^(+)in NVPF induces the generation of electronic defects and expansion of Na^(+)-migration channels,resulting in the enhancement in electronic conductivity and acceleration of Na^(+)-migration kinetics.It is disclosed that the formed stronger Na O bonds with high ionicity than V O bonds lead to the significant increase in structural stability and ionicity in the Na^(+)-substituted NVPF(NVPF-Nax).The aforementioned effects of Na^(+)substitution achieve the unprecedented electrochemical performance in the optimized Na_(3.14)V1.93Na0.07(PO_(4))_(2)F_(3)(NVPF-Na_(0.07)).As a result,NVPF-Na0.07 delivers a high-rate capability(77.5 mAh g^(−1)at 20 C)and ultralong cycle life(only 0.027%capacity decay per cycle over 1000 cycles at 10 C).Sodium-ion full cells are designed using NVPF-Na0.07 as cathode and Se@reduced graphene oxide as anode.The full cells exhibit excellent wide-temperature electrochemical performance from−25 to 25C with an outstanding rate capability(96.3 mAh g^(−1)at 20 C).Furthermore,it delivered an excellent cycling performance over 300 cycles with a capacity retention exceeding 90%at 0.5 C under different temperatures.This study demonstrates a feasible strategy for the development of advanced cathode materials with excellent electrochemical properties to achieve high-efficiency energy storage. 展开更多
关键词 CATHODE full cell ionicity Na3V2(PO4)2F3 sodium-ion batteries
原文传递
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
3
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
在线阅读 下载PDF
Alternative Strategy for Development of Dielectric Calcium Copper Titanate‑Based Electrolytes for Low‑Temperature Solid Oxide Fuel Cells
4
作者 Sajid Rauf Muhammad Bilal Hanif +8 位作者 Zuhra Tayyab Matej Veis MAKYousaf Shah Naveed Mushtaq Dmitry Medvedev Yibin Tian Chen Xia Martin Motola Bin Zhu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期310-332,共23页
The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developi... The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs.In this context,for the first time,a dielectric material,CaCu_(3)Ti_(4)O_(12)(CCTO)is designed for LT-SOFCs electrolyte application in this study.Both individual CCTO and its heterostructure materials with a p-type Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ)(NCAL)semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450–550℃.The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm^(-2) and an open-circuit voltage(OCV)of 0.95 V at 550℃,while the cell with the CCTO–NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm^(-2) along with a higher OCV over 1.0 V,which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk.It is found that these promising outcomes are due to the interplay of the dielectric material,its structure,and overall properties that led to improve electrochemical mechanism in CCTO–NCAL.Furthermore,density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO–NCAL.Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs. 展开更多
关键词 LT-SOFCs Dielectric CaCu_(3)Ti_(4)O_(12) Semiconductor Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ) Ionic conductivity Heterostructure electrolyte
在线阅读 下载PDF
Efficient fixation of CO_(2) to cyclic carbonates and oxazolidinones with multi-hydroxyl bis-(quaternary ammonium) ionic liquids as catalysts under mild conditions
5
作者 BAI Yumeng YANG Haijian 《中南民族大学学报(自然科学版)》 CAS 2025年第1期1-8,共8页
A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic syn... A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results. 展开更多
关键词 chemical conversion of CO_(2) multi-hydroxyl bis-(quaternary ammonium) ionic liquids
在线阅读 下载PDF
Recyclable selenoviologen-based D-A porous ionic polymer: from dual-channels photocatalytic degradation to plant growth
6
作者 Chenjing Liu Guoping Li +5 位作者 Yujing Gao Yawen Li Wenxi He Lei Zhang Wenxin Wei Gang He 《Science China Chemistry》 2025年第4期1511-1521,共11页
Antibiotic contamination in water systems poses significant environmental concerns;finding efficient photocatalysts that utilize visible light is still a challenge in the field of antibiotic degradation.The selenoviol... Antibiotic contamination in water systems poses significant environmental concerns;finding efficient photocatalysts that utilize visible light is still a challenge in the field of antibiotic degradation.The selenoviologen-based D-A porous ionic polymer(SeV-PIP)was synthesized by selenoviologen(SeV^(2+))acceptor units with triazine donor units using the Sonogashira reaction.The SeV-PIP exhibits remarkable visible light absorption;effective charge separation and excellent radical cation stability;enabling both photogenerated electrons and holes to participate in dual-channel degradation and demonstrating great recyclability.The efficient degradation of tetracycline antibiotics under visible-light conditions achieves a degradation rate of up to 96%and a recovery rate of 97%;even in the presence of common wastewater contaminants;leading to the eventual mineralization of the contaminant molecules.A flowing sun-light-degradation tandem plant-growth device was designed and assembled;which verified that the degraded wastewater has plant-growth promoting abilities through bean seedling growth experiments and realized further application.This research contributes to sustainable wastewater treatment strategies;emphasizing the importance of advanced photocatalysis for environmental remediation. 展开更多
关键词 VIOLOGEN porous ionic polymer photocatalysis water treatment ANTIBIOTICS
原文传递
Boosting electrochemical reduction of CO_(2)to CO using molecule-regulated Ag nanoparticle in ionic liquids
7
作者 Fangfang Li Kuilin Peng +3 位作者 Chongyang Jiang Shaojuan Zeng Xiangping Zhang Xiaoyan Ji 《Green Energy & Environment》 2025年第4期813-820,共8页
Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big ... Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big challenge.In this work,a strategy of introducing functionalized molecules with desirable CO_(2)affinity to regulate Ag catalyst for promoting electrochemical reduction of CO_(2)was proposed.Specifically,3-mercapto-1,2,4-triazole was introduced onto the Ag nanoparticle(Ag-m-Triz)for the first time to achieve selectively converting CO_(2)to carbon monoxide(CO).This Ag-m-Triz exhibits excellent performance for CO_(2)reduction with a high CO Faradaic efficiency(FECO)of 99.2%and CO partial current density of 85.0 mA cm^(-2)at-2.3 V vs.Ag/Agt in H-cell when combined with the ionic liquid-based electrolyte,30 wt%1-butyl-3-methylimidazolium hexafluorophosphate([Bmim][PF6])-65 wt%acetonitrile(AcN)-5 wt%H2O,which is 2.5-fold higher than the current density in Ag-powder under the same condition.Mechanism studies confirm that the significantly improved performance of Ag-m-Triz originates from(i)the stronger adsorption ability of CO_(2)molecule and(ii)the weaker binding energy to form the COOH*intermediate on the surface of Ag-m-Triz compared with the Ag-powder catalyst,which boosts the conversion of CO_(2)to CO.This research provides a facile way to regulate electrocatalysts for efficient CO_(2)reduction by introducing functionalized molecules. 展开更多
关键词 CO_(2)reduction CO ELECTROCHEMICAL Molecule-regulated Silver Ionic liquid
在线阅读 下载PDF
Dual-functional additive of cesium ion for achieving ultrahigh efficiency of persistent phosphorescence in existing polymer-based materials
8
作者 Yao Liu Jinzheng Chen +8 位作者 Yiling Miao Kaimin Zhang Faxu Lin Huahua Huang Lina Zhang Zhan Yang Yi Zhang Zhenguo Chi Zhiyong Yang 《Science China Chemistry》 2025年第2期754-762,共9页
Despite great achievements obtained for polymer-based room-temperature phosphorescence(RTP)materials,the limited efficiencies of persistent RTP still hinder their development.Herein,a simple and universal strategy of ... Despite great achievements obtained for polymer-based room-temperature phosphorescence(RTP)materials,the limited efficiencies of persistent RTP still hinder their development.Herein,a simple and universal strategy of using the dual-functional additive of Cs+was presented,which could simultaneously enhance the efficiency(Φp)and maintain the long lifetime(τp)of RTP in existing polymer-based systems with various phosphors and polymers.Among them,the commercial emitter(TpB)-doped polyvinyl alcohol(PVA)/Cs_(2)CO_(3) system possessed an extremely high Φp up to 75.5% and still maintained a longτp of 2.13 s,by introducing the heavy-atom effect and an extra network of ionic bonding through the Cs+additive.Additionally,the temperature resistance of RTP in TpB@PVA/Cs+film could also be improved to 85℃.More satisfactorily,the efficiency of Förster resonance energy transfer(FRET)from RTP to near-infrared(NIR)was also remarkably enhanced in the multi-component systems.This work provides a simple and universal strategy for developing polymer systems with high RTP performance. 展开更多
关键词 persistent phosphorescence cesium carbonate EFFICIENCY heavy-atom effect ionic interaction
原文传递
Preparation and performance of highly-conductive dual-doped Li_(7)La_(3)Zr_(2)O_(12)solid electrolytes for thermal batteries
9
作者 Wei Li Shu Zhang +5 位作者 Xinya Bu Jing Luo Yi Zhang Mengyu Yan Ting Quan Yanli Zhu 《Green Energy & Environment》 2025年第2期399-409,共11页
Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-... Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-doped LLZO(LLZGO),which exhibits high ionic conductivity.However,the limited size of the Liþtransport bottleneck restricts its high-current discharging performance.The present study focuses on the synthesis of Ga^(3+)þand Ba^(2+)þco-doped LLZO(LLZGBO)and investigates the influence of doping contents on the morphology,crystal structure,Liþtransport bottleneck size,and ionic conductivity.In particular,Ga_(0.32)Ba_(0.15)exhibits the highest ionic conductivity(6.11E-2 S cm^(-1) at 550 C)in comparison with other compositions,which can be attributed to its higher-energy morphology,larger bottleneck and unique Liþtransport channel.In addition to Ba^(2+),Sr^(2+)þand Ca^(2+)have been co-doped with Ga3þinto LLZO,respectively,to study the effect of doping ion radius on crystal structures and the properties of electrolytes.The characterization results demonstrate that the easier Liþtransport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions.As a result,the assembled thermal battery with Ga_(0.32)Ba_(0.15)-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g^(-1) at an elevated temperature of 525℃.The discharge specific capacity of the thermal cell at 500 mA amounts to 63%of that at 100 mA,showcasing exceptional high-current discharging performance.When assembled as prototypes with fourteen single cells connected in series,the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm^(-2).These findings suggest that Ga,Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity,quick-initiating and high-current discharging thermal batteries. 展开更多
关键词 Element doping Thermal battery Solid electrolyte LLZO Ionic conductivity
在线阅读 下载PDF
Performance Enhancement of Aquivion-based Ionic Polymer Metal Composites for Cylindrical Actuators
10
作者 Xiaojie Tong Min Yu +3 位作者 Guoxiao Yin Yuwei Wu Chengbo Tian Gengying Wang 《Journal of Bionic Engineering》 2025年第1期1-11,共11页
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine... As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized. 展开更多
关键词 Ionic polymer-metal composite Equivalent weight Aquivion NAFION Actuation performance
原文传递
Anti-Swelling Polyelectrolyte Hydrogel with Submillimeter Lateral Confinement for Osmotic Energy Conversion
11
作者 Yongxu Liu Jiangnan Song +10 位作者 Zhen Liu Jialin Chen Dejuan Wang Hui Zhi Jiebin Tang Yafang Zhang Ningbo Li Weijia Zhou Meng An Hong Liu Guobin Xue 《Nano-Micro Letters》 2025年第4期96-110,共15页
Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power densi... Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity.Herein,polyelectrolyte hydrogels(channel width,2.2 nm)with inherent high ion conductivity have been demonstrated to enable excellent selective ion transfer when confined in cylindrical anodized aluminum pore with lateral size even up to the submillimeter scale(radius,0.1 mm).The membrane permeability of the anti-swelling hydrogel can also be further increased with cellulose nanofibers.With real seawater and river water,the output power density of a three-chamber cell on behalf of repeat unit of RED system can reach up to 8.99 W m^(-2)(per unit total membrane area),much better than state-of-the-art membranes.This work provides a new strategy for the preparation of polyelectrolyte hydrogel-based ion-selective membranes,owning broad application prospects in the fields of osmotic energy collection,electrodialysis,flow battery and so on. 展开更多
关键词 Ionic polymer HYDROGEL Confinement effect Anti-swelling Osmotic energy conversion
在线阅读 下载PDF
Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population
12
作者 Yuetong Chen Chen Li +6 位作者 Yi Shi Jiali Dai Yixuan Meng Shuwei Li Cuiju Tang Dongying Gu Jinfei Chen 《Journal of Biomedical Research》 2025年第1期76-86,共11页
The KCNQ family of genes(KCNQ1–KCNQ5),encoding voltage-gated K+(Kv)channels,have been demonstrated to play potential pathophysiological roles in cancers.However,the associations between genetic variants located in KC... The KCNQ family of genes(KCNQ1–KCNQ5),encoding voltage-gated K+(Kv)channels,have been demonstrated to play potential pathophysiological roles in cancers.However,the associations between genetic variants located in KCNQ family genes and gastric cancer survival remain unclear.In this study,a large-scale cohort comprising 1135 Chinese gastric cancer patients was enrolled to identify genetic variants in KCNQ family genes associated with overall survival(OS).Based on the survival evaluation of all five KCNQ family genes,KCNQ1 was selected for subsequent genetic analysis.In both Cox regression model and stepwise Cox regression model used to evaluate survival-related genetic variants,we found that KCNQ1 rs10832417G>T was associated with an increased OS in gastric cancer patients(adjusted hazards ratio[HR]=0.84,95%confidence interval[CI]:0.72–0.98,P=0.023).Subsequently,a nomogram was constructed to enhance the prognostic capacity and clinical translation of rs10832417 variants.The rs10832417 T allele was predicted to increase the minimum free energy of the secondary structure.Furthermore,we observed that gastric cancer patients with downregulated KCNQ1expression had a poorer survival across multiple public datasets.The findings of the present study indicate that KCNQ1 rs10832417 may serve as an independent prognostic predictor of gastric cancer,providing novel insights into the progression and survival of the disease. 展开更多
关键词 gastric cancer SURVIVAL genetic variants ionic channels
在线阅读 下载PDF
Robust and High‑Wettability Cellulose Separators with Molecule‑Reassembled Nano‑Cracked Structures for High‑Performance Supercapacitors
13
作者 Xiaoyu Wang Wenqiu Zheng +3 位作者 Hui Zhao Junying Li Sheng Chen Feng Xu 《Nano-Micro Letters》 2025年第7期26-41,共16页
Separators in supercapacitors(SCs)frequently suffer from high resistance and the risk of short circuits due to inadequate electrolyte wettability,depressed mechanical properties,and insufficient thermal stability.Here... Separators in supercapacitors(SCs)frequently suffer from high resistance and the risk of short circuits due to inadequate electrolyte wettability,depressed mechanical properties,and insufficient thermal stability.Here,we develop a high-performance regenerated cellulose separator with nano-cracked structures for SCs via a binary solvent of superbase-derived ionic liquid and dimethylsulfoxide(DMSO).The unique nano-cracks with an average width of 7.45 nm arise from the acceleration of cellulose molecular reassembly by DMSO-regulated hydrogen bonding,which endows the separator with high porosity(70.2%)and excellent electrolyte retention(329%).The outstanding thermal stability(273℃)and mechanical strength(70 MPa)enable the separator to maintain its structural integrity under high temperatures and external forces.With these benefits,the SC utilizing the cellulose separator enables a high specific capacitance of 93.6 F g^(−1) at 1.0 A g^(−1) and a remarkable capacitance retention of 99.5%after 10,000 cycles compared with the commercial NKK-MPF30AC and NKK-TF4030.The robust and high-wettability cellulose separator holds promise as a superior alternative to commercial separators for advanced SCs with enhanced performance and improved safety. 展开更多
关键词 Superbase-derived ionic liquids Molecular reassembly NANO-STRUCTURE Cellulose separators Supercapacitor
在线阅读 下载PDF
2,6-Diaminoanthraquinone modified MXene(Ti_(3)C_(2)T_(x))/graphene as the negative electrode materials for ionic liquid-based asymmetric supercapacitors
14
作者 Li Sun Lujia Chai +3 位作者 Liangqi Jing Yujuan Chen Kelei Zhuo Jianji Wang 《Green Energy & Environment》 2025年第4期845-853,共9页
Due to insufficient energy density,supercapacitors(SCs)with preeminent-power and long cycle stability cannot be implemented in some practical applications.Exploring hybrid materials with redox activity to emerge high ... Due to insufficient energy density,supercapacitors(SCs)with preeminent-power and long cycle stability cannot be implemented in some practical applications.Exploring hybrid materials with redox activity to emerge high specific capacitance in ionic liquid(IL)electrolytes can solve this problem.Herein,we report a redox-organic molecule 2,6-diaminoanthraquinone(DAAQ)modified MXene(Ti3C2Tx)/Graphene(DAAQ-M/G)composite material.With the assist of graphene oxide(GO),MXene and graphene fabricate a three-dimensional(3D)interconnected structure as a conductive framework,which inhibits self-stacking of MXene monolayers and ensures high electronic conductivity.Meanwhile,DAAQ is loaded onto the M/G framework through covalent/non-covalent functionalization.The DAAQ as a spacer effectively enlarges the interlayer spacing of MXene nanosheets,and meanwhile produces reversible redox reactions during charge/discharge processes to provide additional Faradaic contribution to capacity.Therefore,the specific capacitance(capacity)of the DAAQ-M/G as the negative electrode material reaches to 226 F g^(-1)(306 C g^(-1))at 1 A g^(-1)in 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4)electrolyte.Furthermore,an asymmetric supercapacitor(ASC)is assembled using DAAQ-M/G as the negative electrode and self-prepared organic molecule hydroquinone modified reduced graphene oxide(HQ-RGO)material as the positive electrode,with a high energy density of 43 Wh kg^(-1)at high power density of 1669 Wkg^(-1).The ASC can maintain 80%of initial specific capacitance after 9000 cycles.This research can provide better support to develop advanced organic molecules-modified MXene composite materials for ionic liquid-based SCs. 展开更多
关键词 MXene 2 6-diaminoanthraquinone Conductive framework Ionic liquid Asymmetric supercapacitor
在线阅读 下载PDF
Effect of ion solvation energy on electrohydrodynamic behavior of ionic liquid droplets in electrospray thrusters
15
作者 Yipeng FAN Chong CHEN +3 位作者 Huifeng KANG Guangqing XIA Chang LU Yajie HAN 《Chinese Journal of Aeronautics》 2025年第3期222-233,共12页
The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to furthe... The electrospray thruster supplied by ionic liquid is a promising micro-propulsion thruster with small size and precise thrust, which can emit both cations and anions to achieve self-neutralization. In order to further investigate the effect of ion solvation energy on the evaporation of cations and anions from ionic liquid under the action of a uniform electric field, this paper establishes a transient Electrohydrodynamic (EHD) model for free ionic liquid droplets undergoing ion evaporation. The dynamic processes of droplet deformation and ion evaporation are simulated. And the study further focuses on the influence of different ion solvation energies for cations on the droplet morphology and the ion evaporation characteristics at the positively charged end and negatively charged end of the droplet. The results indicate that, when the ion solvation energy for cations is higher than that of anions, it will cause the ion evaporation at the positively charged end of the droplet to lag behind the ion evaporation at the negatively charged end. And the higher the ion solvation energy for the cations, the longer the evaporation lag time at the positively charged end of the droplet, which will lead to a higher peak of surface charge density that can be reached, resulting in a larger evaporation current and sharper droplet stretching deformation. Additionally, the peak surface charge density of the positively charged end of the droplet is linearly related to the ion solvation energy for cations, while the peak surface charge density of the negatively charged end remains almost unchanged and is not significantly affected by the ion solvation energy for cations. 展开更多
关键词 Ionic liquid ELECTROSPRAY ELECTROHYDRODYNAMICS Ion solvation energy Ion evaporation
原文传递
Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries
16
作者 Dewu Lin Yushuang Lin +10 位作者 Ruihong Pan Jiapei Li Anquan Zhu Tian Zhang Kai Liu Dongyu Feng Kunlun Liu Yin Zhou Chengkai Yang Guo Hong Wenjun Zhang 《Nano-Micro Letters》 2025年第8期320-332,共13页
The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we desig... The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs. 展开更多
关键词 Zinc-ion battery Hydrogel electrolyte Cation conduction Ionic repulsion Water state
在线阅读 下载PDF
Non-hand-worn,load-free VR hand rehabilitation system assisted by deep learning based on ionic hydrogel
17
作者 Pengcheng Zhu Mengjuan Niu +5 位作者 Siyang Liang Weiqi Yang Yitao Zhang Ke Chen Zhifeng Pan Yanchao Mao 《Nano Research》 2025年第4期443-452,共10页
Many individuals suffer from stroke,osteoarthritis,or accidental hand injuries,making hand rehabilitation greatly significant.The current hand rehabilitation therapy requires repetitive task-oriented hand exercises,re... Many individuals suffer from stroke,osteoarthritis,or accidental hand injuries,making hand rehabilitation greatly significant.The current hand rehabilitation therapy requires repetitive task-oriented hand exercises,relying on exoskeleton mechanical gloves integrated with different sensors and actuators.However,these conventional mechanical gloves require wearing heavy mechanical components that need weightbearing and increase hand burden.Additionally,these devices are usually structurally complex,complicated to operate,and require specialized medical institutions.Here,a Virtual Reality(VR)hand rehabilitation system is developed by integrating deep-learning-assisted electromyography(EMG)recognition and VR human-machine interfaces(HMIs).By applying a wetadhesive,self-healable,and conductive ionic hydrogel electrode array assisted by deep learning,the system can realize 14 Jebsen hand rehabilitation gestures recognition with an accuracy of 97.9%.The recognized gestures further communicate with the VR platform for real-time interaction in a virtual scenario to accomplish VR hand rehabilitation.Compared with present hand rehabilitation devices,the proposed system enables patients to perform immersive hand exercises in real-life scenarios without the need for hand-worn weights,and offers rehabilitation training without time and location limitations.This system could bring great breakthroughs for the development of a load-free hand rehabilitation system available in home-based therapy. 展开更多
关键词 human-machine interfaces virtual reality systems electrophysiological monitoring ionic hydrogels
原文传递
Organic Radical-Boosted Ionic Conductivity in Redox Polymer Electrolyte for Advanced Fiber-Shaped Energy Storage Devices
18
作者 Jeong-Gil Kim Jaehyoung Ko +8 位作者 Hyung-Kyu Lim Yerin Jo Hayoung Yu Min Woo Kim Min Ji Kim Hyeon Su Jeong Jinwoo Lee Yongho Joo Nam Dong Kim 《Nano-Micro Letters》 2025年第8期202-218,共17页
Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during defo... Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices. 展开更多
关键词 Redox polymer electrolyte Hydroxy-TEMPO Ionic conductivity Self-exchange reaction Fiber-shaped energy storage devices
在线阅读 下载PDF
Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives
19
作者 Wen-Jing Zhang Yan-Cheng Hu +3 位作者 Yan-Hong Tan Jia Li Ning Li Jing-Pei Cao 《Journal of Energy Chemistry》 2025年第2期760-768,I0016,共10页
High-energy-density(HED)fuel(e.g.widely used JP-10 and RJ-4),featuring compact 3D polycyclic structure with high strain,is of critical importance for volume-limited military aircraft,since their high density and combu... High-energy-density(HED)fuel(e.g.widely used JP-10 and RJ-4),featuring compact 3D polycyclic structure with high strain,is of critical importance for volume-limited military aircraft,since their high density and combustion heat can provide more propulsion energy.To reduce the reliance on petroleum source,it is highly desirable to develop renewable alternatives for the production of strained polycyclic HED fuel,but which remains a big challenge because of the inaccessibility caused by the high strain,We herein demonstrate a three-step catalytic route towards highly strained C_(17)and C_(18)spirofuel with biomass feedstocks.The process includes catalytic aldol condensation of renewable cyclohexanone/cyclopentanone with benzaldehyde,catalytic spiro Diels-Alder(D-A)reaction of aldol adduct with isoprene,and catalytic hydrodeoxygenation.The key spiro D-A reaction is enabled by the catalysis of heterogeneous Lewis acidic ionic liquid.The chloroaluminate IL,formed by benign urea and AICl3,exhibits good catalytic performance and reusability for this step.An eventual hydrodeoxygenation(HDO)over Pd/C and H-Y produces strained tricyclic spirofuel with density>0.93 g/mL,combustion heat>41 MJ/L and freezing point<-40℃,which are better than the properties of tactical fuel RJ-4.Therefore,it is anticipated that the as-prepared renewable fuels have the potential to replace traditional petroleum-derived HED fuels. 展开更多
关键词 Biomass derivatives High-energy-density Spiro polycyclic fuel Cycloaddition Lewis acidic ionic liquid
在线阅读 下载PDF
In situ preparation of composite gel electrolytes with high room-temperature ionic conductivity and homogeneous Na+ flux for sodium metal batteries
20
作者 Yuzhuo Ding Longbin Li +3 位作者 Shuo Xu Binghua Zhou Jing Wang Yiwang Chen 《Science China Chemistry》 2025年第4期1522-1532,共11页
Gel polymer electrolytes(GPEs)are conceived to be a good way to build safer lithium/sodium metal batteries by substituting traditional liquid electrolytes.However;it is still very difficult for GPEs to simultaneously ... Gel polymer electrolytes(GPEs)are conceived to be a good way to build safer lithium/sodium metal batteries by substituting traditional liquid electrolytes.However;it is still very difficult for GPEs to simultaneously achieve high room-temperature ionic conductivity;uniform Na+flow;superior interfacial compatibility;and increased mechanical strength.Herein;a composite gel electrolyte(KNT-PTGPE)with high ionic conductivity of 4.06 mS cm^(-1) is prepared through chemical crosslinking strategy and the introduction of inorganic nanoparticles.The hybrid gel polymer network is formed by in situ cross-linking modified TiO_(2)(KNT);three-armed trimethylolpropane trimethacrylate and poly(ethylene glycol)diacrylate.The resulting 3D interpenetrating network facilitates the absorption of liquid electrolytes and improves the mechanical properties of electrolyte.Theoretical calculation and in situ measurements reveal that the homogeneous TiO_(2) fillers with abundant Lewis acid site and polymer network are involved in the solvation process of Na+;thus constructing a fast Na+transport channel.Consequently;a stable plating/stripping process lasting over 900 h is achieved due to the uniform distribution of Na+flux and the good mechanical properties of the electrolyte;and the assembled cell exhibits an excellent long-term cycling stability.The approach offers more opportunities to design GPEs for high performance SMBs. 展开更多
关键词 gel polymer electrolytes in situ crosslinking ionic conductivities ion flux sodium metal batteries
原文传递
上一页 1 2 107 下一页 到第
使用帮助 返回顶部