The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based...The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based oxide(LLO)materials naturally stand out.Despite their inherent advantages,these materials encounter significant practical hurdles,including low initial Coulombic efficiency(ICE),diminished cycle/rate performance,and voltage fading during cycling,hindering their widespread adoption.In response,we introduce an ionic-electronic dual-conductive(IEDC)surface control strategy that integrates an electronically conductive graphene framework with an ionically conductive heteroepitaxial spinel Li_(4)Mn_(5)O_(12)layer.Prolonged electrochemical and structural analyses demonstrate that this IEDC heterostructure effectively minimizes polarization,mitigates structural distortion,and enhances electronic/ionic diffusion.Density functional theory calculations highlight an extensive Li^(+)percolation network and lower Li^(+)migration energies at the layered-spinel interface.The designed LLO cathode with IEDC interface engineering(LMOSG)exhibits improved ICE(82.9%at 0.1 C),elevated initial discharge capacity(296.7 mAh g^(-1)at 0.1 C),exceptional rate capability(176.5 mAh g^(-1)at 5 C),and outstanding cycle stability(73.7%retention at 5 C after 500 cycles).These findings and the novel dual-conductive surface architecture design offer promising directions for advancing highperformance electrode materials.展开更多
Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathode...Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport.展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were ...Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were investigated. Effects of LiClO4 and TCNQ concentrations on the conductivity of PEO/P2VP/LiClO4 or TCNQ blend were studied. The ionic conductivity of PEO/P2VP/LiClO4 blend increases with increasing PEO content. At a Li/ethylene bride molar ratio of 0.10 and a TCNQ/2-vinyl pyridine molar ratio of 0.5, the mixed conductivity of PEO/P2VP/LiClO4/TCNQ is higher than the total of ionic conductivity of PEO/P2VP/LiClO4 and electronic conductivity of PEO/P2VP/TCNQ when the weight ratio of PEO and P2VP is 6/4 or 5/5. Scanning electron microscopy (SEM) on the broken cross-section of the PEO/P2VP/LiClO4 blend and differential scanning calorimetry (DSC) results show that LiClO4 could act as a compatibilizer in the blend.展开更多
The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient ...The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient energy systems and neuromorphic in-sensor computing networks:Unlike tradi-tional electronics based on von Neumann computing architec-ture,the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic.Here,a systematic summary on the state of art in bioinspired iontronics is pre-sented and the stimulus from chemical potentials,electric fields,light,heat,piezo and magnetic fields on ion dynamics are reviewed.Challenges and perspectives are also addressed in the aspects of iontronic integrated systems.It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface.展开更多
Solid solutions of Na_(0.5) Bi_(0.5) TiO_(3)(NBT)and BiNi_(0.5) Ti_(0.5) O_(3)(BNiT)were prepared by a solid-state reaction route,and their electrical properties investigated by a combination of impedance spectroscopy...Solid solutions of Na_(0.5) Bi_(0.5) TiO_(3)(NBT)and BiNi_(0.5) Ti_(0.5) O_(3)(BNiT)were prepared by a solid-state reaction route,and their electrical properties investigated by a combination of impedance spectroscopy and electromotive force measurements to explore the possibility of developing mixed ionic-electronic conductors based on NBT.Phase analysis showed that BNiT has a large solid solution limit in NBT(60 mol%based on X-ray diffraction),and the room temperature crystal structure changes from rhombohedral to pseudo-cubic with increasing BNiT content.Neutron diffraction revealed the coexistence of rhombohedral and tetragonal phases when the BNiT content≥40 mol%.Electrically,incorporation of BNiT induces p-type electronic conduction into NBT by hopping of holes between Ni^(2+)(Ni_(Ni)^(x))and Ni^(3+)(Ni·Ni),and therefore changes the electrical conduction mechanism systematically from predominant oxide-ion conduction to mixed ionic-electronic conduction and then to predominant p-type electronic conduction.The total conductivity of the solid solutions showed a“V-shape”variation with increasing BNiT content.Possible mechanisms for the phase evolution and the conductivity-composition relationships are discussed.Achieving high levels of ionic and electronic conductivity simultaneously in NBT by introducing elements with variable oxidation states remains challenging due to the competition between an enhanced electronic component and a suppressed ionic component.Low levels of BNiT incorporation are,however,beneficial to reducing the dielectric loss of NBT for dielectric applications.展开更多
Silicon(Si)is one of the most promising anodes for enabling all-solid-state batteries(ASSBs)with high energy density and safety.However,the tremendous volume change and sluggish kinetics result in poor electrochemical...Silicon(Si)is one of the most promising anodes for enabling all-solid-state batteries(ASSBs)with high energy density and safety.However,the tremendous volume change and sluggish kinetics result in poor electrochemical performance.Herein,we proposed an ionic/electronic dual-conductive material of Li_(x)Si as a diffusion-rapid and all-active anode for ASSBs.Compared with pure Si anode,the as-fabricated Li_(x)Si showed dramatic promotions of 35 times electronic and 400 times ionic conductivities.The three-dimensional(3D)ionic-electronic transport system of Li_(x)Si enabled rapid kinetics and uniform volume change of electrode materials in the whole electrode,corresponding to a lower volumechange rate.As a result,the ASSBs with LiCoO_(2)cathode exhibited a reversible discharge capacity of 154.4 mAh g−1,corresponding to an initial Coulombic efficiency of 97.3%.Besides,the batteries delivered a high rate capacity of 99.3 mAh g^(−1)at 2 C and long-term cycle stability of 94.0%after 800 cycles at 1 C,which was much better than the pure Si anode.This study sheds light on a new understanding of the importance of ionic conductivity for Si-based anode and might help inspire the design of advanced anode materials for ASSBs.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:22179008,21875022Yibin“Jie Bang Gua Shuai”,Grant/Award Number:2022JB004+2 种基金Beijing Nova Program,Grant/Award Number:20230484241Postdoctoral Fellowship Program of CPSF,Grant/Award Number:GZB20230931Special Support of Chongqing Postdoctoral Research Project,Grant/Award Number:2023CQBSHTB2041。
文摘The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based oxide(LLO)materials naturally stand out.Despite their inherent advantages,these materials encounter significant practical hurdles,including low initial Coulombic efficiency(ICE),diminished cycle/rate performance,and voltage fading during cycling,hindering their widespread adoption.In response,we introduce an ionic-electronic dual-conductive(IEDC)surface control strategy that integrates an electronically conductive graphene framework with an ionically conductive heteroepitaxial spinel Li_(4)Mn_(5)O_(12)layer.Prolonged electrochemical and structural analyses demonstrate that this IEDC heterostructure effectively minimizes polarization,mitigates structural distortion,and enhances electronic/ionic diffusion.Density functional theory calculations highlight an extensive Li^(+)percolation network and lower Li^(+)migration energies at the layered-spinel interface.The designed LLO cathode with IEDC interface engineering(LMOSG)exhibits improved ICE(82.9%at 0.1 C),elevated initial discharge capacity(296.7 mAh g^(-1)at 0.1 C),exceptional rate capability(176.5 mAh g^(-1)at 5 C),and outstanding cycle stability(73.7%retention at 5 C after 500 cycles).These findings and the novel dual-conductive surface architecture design offer promising directions for advancing highperformance electrode materials.
基金supported by Natural Science Foundation of Jiangsu Province(No.BK20200800)the National Natural Science Foundation of China(Nos.51902165,12004145,52072323,and 52122211)+2 种基金Natural Science Foundation of Jiangxi Province(Nos.20192ACBL2004 and 20212BAB214032)Nanjing Science&Technology Innovation Project for Personnel Studying AbroadPart of the calculations were supported by the Center for Computational Science and Engineering at Southern University of Science and Technology,and high-performance computing platform of Jinggangshan University.
文摘Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport.
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
基金Project supported by the National Natural Science Foundation of China.
文摘Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were investigated. Effects of LiClO4 and TCNQ concentrations on the conductivity of PEO/P2VP/LiClO4 or TCNQ blend were studied. The ionic conductivity of PEO/P2VP/LiClO4 blend increases with increasing PEO content. At a Li/ethylene bride molar ratio of 0.10 and a TCNQ/2-vinyl pyridine molar ratio of 0.5, the mixed conductivity of PEO/P2VP/LiClO4/TCNQ is higher than the total of ionic conductivity of PEO/P2VP/LiClO4 and electronic conductivity of PEO/P2VP/TCNQ when the weight ratio of PEO and P2VP is 6/4 or 5/5. Scanning electron microscopy (SEM) on the broken cross-section of the PEO/P2VP/LiClO4 blend and differential scanning calorimetry (DSC) results show that LiClO4 could act as a compatibilizer in the blend.
基金supported by the Beijing Natural Science Foundation[Grant No.IS23040].
文摘The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient energy systems and neuromorphic in-sensor computing networks:Unlike tradi-tional electronics based on von Neumann computing architec-ture,the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic.Here,a systematic summary on the state of art in bioinspired iontronics is pre-sented and the stimulus from chemical potentials,electric fields,light,heat,piezo and magnetic fields on ion dynamics are reviewed.Challenges and perspectives are also addressed in the aspects of iontronic integrated systems.It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface.
基金sponsored by the National Natural Science Founda-tion of China(Nos.52072239 and 52234010)the Natural Science Foundation of Chongqing,China(No.cstc2021jcyj-msxmX0720)the EPSRC(No.EP/L027348/1).
文摘Solid solutions of Na_(0.5) Bi_(0.5) TiO_(3)(NBT)and BiNi_(0.5) Ti_(0.5) O_(3)(BNiT)were prepared by a solid-state reaction route,and their electrical properties investigated by a combination of impedance spectroscopy and electromotive force measurements to explore the possibility of developing mixed ionic-electronic conductors based on NBT.Phase analysis showed that BNiT has a large solid solution limit in NBT(60 mol%based on X-ray diffraction),and the room temperature crystal structure changes from rhombohedral to pseudo-cubic with increasing BNiT content.Neutron diffraction revealed the coexistence of rhombohedral and tetragonal phases when the BNiT content≥40 mol%.Electrically,incorporation of BNiT induces p-type electronic conduction into NBT by hopping of holes between Ni^(2+)(Ni_(Ni)^(x))and Ni^(3+)(Ni·Ni),and therefore changes the electrical conduction mechanism systematically from predominant oxide-ion conduction to mixed ionic-electronic conduction and then to predominant p-type electronic conduction.The total conductivity of the solid solutions showed a“V-shape”variation with increasing BNiT content.Possible mechanisms for the phase evolution and the conductivity-composition relationships are discussed.Achieving high levels of ionic and electronic conductivity simultaneously in NBT by introducing elements with variable oxidation states remains challenging due to the competition between an enhanced electronic component and a suppressed ionic component.Low levels of BNiT incorporation are,however,beneficial to reducing the dielectric loss of NBT for dielectric applications.
基金This research was made possible as a result of a generous grant from the National Natural Science Foundation of China(NSFCgrant nos.22308303 and 12304029)+1 种基金Beijing Nova Program,China(grant no.20230484376)China First Auto Works(FAW)Group Corp.,Ltd.
文摘Silicon(Si)is one of the most promising anodes for enabling all-solid-state batteries(ASSBs)with high energy density and safety.However,the tremendous volume change and sluggish kinetics result in poor electrochemical performance.Herein,we proposed an ionic/electronic dual-conductive material of Li_(x)Si as a diffusion-rapid and all-active anode for ASSBs.Compared with pure Si anode,the as-fabricated Li_(x)Si showed dramatic promotions of 35 times electronic and 400 times ionic conductivities.The three-dimensional(3D)ionic-electronic transport system of Li_(x)Si enabled rapid kinetics and uniform volume change of electrode materials in the whole electrode,corresponding to a lower volumechange rate.As a result,the ASSBs with LiCoO_(2)cathode exhibited a reversible discharge capacity of 154.4 mAh g−1,corresponding to an initial Coulombic efficiency of 97.3%.Besides,the batteries delivered a high rate capacity of 99.3 mAh g^(−1)at 2 C and long-term cycle stability of 94.0%after 800 cycles at 1 C,which was much better than the pure Si anode.This study sheds light on a new understanding of the importance of ionic conductivity for Si-based anode and might help inspire the design of advanced anode materials for ASSBs.