Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic frame...Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.展开更多
Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the ...Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers(SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte(QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt,delivering a high lithium-ion transference number(0.75) and satisfactory ionic conductivity(1.16 × 10^(-3) S cm^(-1) at 30 ℃). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO_4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 ℃. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithiumions migration for high-performance polymer LMBs.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52273081,No.22278329)Young Talent Support Plan of Xi’an Jiaotong University+2 种基金Natural Science Basic Research Program of Shaanxi(No.2022TD-27,No.2020-JC-09)the financial support from Swedish Research Council Grant(2021-05839)the“Young Talent Support Plan”of Xi’an Jiaotong University
文摘Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.
基金supported by the National Natural Science Foundation of China (52273081 and 22278329)the Natural Science Basic Research Program of Shaanxi (2022TD-27 and 2020-JC-09)+2 种基金Qin Chuangyuan Talent Project of Shaanxi Province (OCYRCXM2022-308)the State Key Laboratory for Electrical Insulation and Power Equipment (EIPE23125)the “Young Talent Support Plan” of Xi’an Jiaotong University。
文摘Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers(SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte(QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt,delivering a high lithium-ion transference number(0.75) and satisfactory ionic conductivity(1.16 × 10^(-3) S cm^(-1) at 30 ℃). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO_4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 ℃. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithiumions migration for high-performance polymer LMBs.