The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydrau...The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.展开更多
The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficie...The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficient and unreacted-core shrinking model. By simulation, the zonation phenomenon of leaching reagent in the leaching column was presented, and the breakthrough curve of leaching reagent was obtained. When t=50 s, there existed the saturated and exchange zones, and the leaching reagent concentration decreased gradually from 20 to 9.3 g/L. In accordance with the breakthrough curve, the breakthrough capacity of ion-type rare earth ore and the adsorbed ion concentration of leaching reagent were derived, the time of t=25 s was the breakthrough point of ammonium ion in leaching reagent and the breakthrough capacity of the rare earth ore was 125 g/L. Besides, the chemical kinetics parameters used for the solute transfer process of rare earth leaching were obtained by the simulation and then were used to determine the rate-limiting steps of rare earth leaching process.展开更多
基金Project(50139030) supported by the National Natural Science Foundation of ChinaProject(501072) supported by the Scientific Research Foundation for the Returned Overseas Scholars of the Ministry of Education of China
文摘The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.
基金supported by the National Natural Science Foundation of China(51674125,51776212,91434113)National Key Basic Research Program of China(2015CB251402)Chinese Academy of Sciences(QYZDB-SSW-SYS029)and Outstanding Doctoral Dissertation Project Fund of JXUST(YB2016001)
文摘The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficient and unreacted-core shrinking model. By simulation, the zonation phenomenon of leaching reagent in the leaching column was presented, and the breakthrough curve of leaching reagent was obtained. When t=50 s, there existed the saturated and exchange zones, and the leaching reagent concentration decreased gradually from 20 to 9.3 g/L. In accordance with the breakthrough curve, the breakthrough capacity of ion-type rare earth ore and the adsorbed ion concentration of leaching reagent were derived, the time of t=25 s was the breakthrough point of ammonium ion in leaching reagent and the breakthrough capacity of the rare earth ore was 125 g/L. Besides, the chemical kinetics parameters used for the solute transfer process of rare earth leaching were obtained by the simulation and then were used to determine the rate-limiting steps of rare earth leaching process.