The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a ph...The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a physical interface coupling between two random dissipative systems with uncertain parameters.Due to the complexity and uncertainty inherent in such interface-coupled problems,un-certain diffusion coefficients or friction parameters often arise,leading to consid-ering random systems.We employ Monte Carlo methods to produce independent and identically distributed deterministic heat-heat model samples to address ran-dom systems,and adroitly integrate the ensemble idea to facilitate the fast calcu-lation of these samples.To achieve unconditional stability,we introduce the scalar auxiliary variable(SAV)method to overcome the time constraints of the ensemble implicit-explicit algorithm.Furthermore,for a more accurate and stable scheme,the ensemble data-passing algorithm is raised,which is unconditionally stable and convergent without any auxiliary variables.These algorithms employ the same co-efficient matrix for multiple linear systems and enable easy parallelization,which can significantly reduce the computational cost.Finally,numerical experiments are conducted to support the theoretical results and showcase the unique features of the proposed algorithms.展开更多
Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catal...Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catalyst is urgently needed to further improve the performance of rechargeable zinc-air batteries.Herein,an activation-doping assisted interface modification strategy is demonstrated based on freestanding integrated carbon composite(CoNiLDH@NPC)composed of wood-based N and P doped active carbon(NPC)and CoNi layer double hydroxides(CoNiLDH).In the light of its large specific surface area and unique defective structure,CoNiLDH@NPC with strong interfacecoupling effect in 2D-3D micro-nanostructure exhibits outstanding bifunctionality.Such carbon composites show half-wave potential of 0.85 V for ORR,overpotential of 320 mV with current density of 10 mA cm^(-2) for OER,and ultra-low gap of 0.70 V.Furthermore,highly-ordered open channels of wood provide enormous space to form abundant triple-phase boundary for accelerating the catalytic process.Consequently,zinc-air batteries using CoNiLDH@NPC show high power density(aqueous:263 mW cm^(-2),quasi-solid-state:65.8 mW cm^(-2))and long-term stability(aqueous:500 h,quasi-solid-state:120 h).This integrated protocol opens a new avenue for the rational design of efficient freestanding air electrode from biomass resources.展开更多
文摘The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a physical interface coupling between two random dissipative systems with uncertain parameters.Due to the complexity and uncertainty inherent in such interface-coupled problems,un-certain diffusion coefficients or friction parameters often arise,leading to consid-ering random systems.We employ Monte Carlo methods to produce independent and identically distributed deterministic heat-heat model samples to address ran-dom systems,and adroitly integrate the ensemble idea to facilitate the fast calcu-lation of these samples.To achieve unconditional stability,we introduce the scalar auxiliary variable(SAV)method to overcome the time constraints of the ensemble implicit-explicit algorithm.Furthermore,for a more accurate and stable scheme,the ensemble data-passing algorithm is raised,which is unconditionally stable and convergent without any auxiliary variables.These algorithms employ the same co-efficient matrix for multiple linear systems and enable easy parallelization,which can significantly reduce the computational cost.Finally,numerical experiments are conducted to support the theoretical results and showcase the unique features of the proposed algorithms.
基金financially supported by the National Key Research and Development Program of China(2022YF E0138900)National Natural Science Foundation of China(21972017)+2 种基金the Fundamental Research Funds for the Central Universities(2232022D-18)Shanghai Sailing Program(22YF1400700)the Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(22CGA37).
文摘Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catalyst is urgently needed to further improve the performance of rechargeable zinc-air batteries.Herein,an activation-doping assisted interface modification strategy is demonstrated based on freestanding integrated carbon composite(CoNiLDH@NPC)composed of wood-based N and P doped active carbon(NPC)and CoNi layer double hydroxides(CoNiLDH).In the light of its large specific surface area and unique defective structure,CoNiLDH@NPC with strong interfacecoupling effect in 2D-3D micro-nanostructure exhibits outstanding bifunctionality.Such carbon composites show half-wave potential of 0.85 V for ORR,overpotential of 320 mV with current density of 10 mA cm^(-2) for OER,and ultra-low gap of 0.70 V.Furthermore,highly-ordered open channels of wood provide enormous space to form abundant triple-phase boundary for accelerating the catalytic process.Consequently,zinc-air batteries using CoNiLDH@NPC show high power density(aqueous:263 mW cm^(-2),quasi-solid-state:65.8 mW cm^(-2))and long-term stability(aqueous:500 h,quasi-solid-state:120 h).This integrated protocol opens a new avenue for the rational design of efficient freestanding air electrode from biomass resources.