Based on the logical labelling method, we prepare an effective pure state in a subsystem of a three spin system via liquid nuclear magnetic resonance technique. Then with this subspace effective pure state we implemen...Based on the logical labelling method, we prepare an effective pure state in a subsystem of a three spin system via liquid nuclear magnetic resonance technique. Then with this subspace effective pure state we implement the Deutsch-Jozsa algorithm. The tomography for the subspace effective pure state and the corresponding spectrum of the output for the Deutsch-Jozsa algorithm agree with theoretical predictions, which shows that we have successfully implemented the Deutsch-Jozsa algorithm in a subsystem of a nuclear spin system and demonstrated a subspace quantum computation.展开更多
In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and...In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.展开更多
基金Supported by the National Key Basic Research and Development Programme of China under Grant No 2001CB309300, the National Natural Science Foundation of China under Grant Nos 10425524 and 10574125, and the European Commission under Contact No 007065 (Marie Curie Action).
文摘Based on the logical labelling method, we prepare an effective pure state in a subsystem of a three spin system via liquid nuclear magnetic resonance technique. Then with this subspace effective pure state we implement the Deutsch-Jozsa algorithm. The tomography for the subspace effective pure state and the corresponding spectrum of the output for the Deutsch-Jozsa algorithm agree with theoretical predictions, which shows that we have successfully implemented the Deutsch-Jozsa algorithm in a subsystem of a nuclear spin system and demonstrated a subspace quantum computation.
基金supported by the National Basic Research Program of China(Grant No.2016YFA0301903)the National Natural Science Foundation of China(Grant Nos.11174370,11304387 and 61205108)the Research Plan Project of National University of Defense Technology(Grant No.ZK16-03-04)
文摘In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.