Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness...Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness of reservoir stimulation. Temporary plugging and diverting fracturing(TPDF) is considered to be a potential uniform-stimulation method for creating multiple fractures simultaneously in the oilfield. However, the multi-fracture propagation morphology during TPDF is not clear now. The purpose of this study is to quantitatively investigate the multi-fracture propagation morphology during TPDF through true tri-axial fracturing experiments and CT scanning. Critical parameters such as fracture spacing, number of perforation clusters, the viscosity of fracturing fluid, and the in-situ stress have been investigated. The fracture geometry before and after diversion have been quantitively analyzed based on the two-dimensional CT slices and three-dimensional reconstruction method. The main conclusions are as follows:(1) When injecting the high viscosity fluid or perforating at the location with low in-situ stress, multiple hydraulic fractures would simultaneously propagate. Otherwise, only one hydraulic fracture was created during the initial fracturing stage(IFS) for most tests.(2) The perforation cluster effectiveness(PCE) has increased from 26.62% during the IFS to 88.86% after using diverters.(3) The diverted fracture volume has no apparent correlation with the pressure peak and peak frequency during the diversion fracturing stage(DFS) but is positively correlated with water-work.(4) Four types of plugging behavior in shale could be controlled by adjusting the diverter recipe and diverter injection time, and the plugging behavior includes plugging the natural fracture in the wellbore, plugging the previous hydraulic fractures, plugging the fracture tip and plugging the bedding.展开更多
Tight oil reservoirs in Songliao Basin were taken as subjects and a novel idealized refracturing well concept was proposed by considering the special parameters of volume fracturing horizontal wells, the refracturing ...Tight oil reservoirs in Songliao Basin were taken as subjects and a novel idealized refracturing well concept was proposed by considering the special parameters of volume fracturing horizontal wells, the refracturing potential of candidate wells were graded and prioritized, and a production prediction model of refracturing considering the stress sensitivity was established using numerical simulation method to sort out the optimal refracturing method and timing. The simulations show that: with the same perforation clusters, the order of fracturing technologies with contribution to productivity from big to small is refracturing between existent fractured sections, orientation diversion inside fractures, extended refracturing, refracturing of existent fractures; and the later the refracturing timing, the shorter the effective time. Based on this, the prediction model of breakdown pressure considering the variation of formation pressure was used to find out the variation pattern of breakdown pressure of different positions at different production time. Through the classification of the breakdown pressure, the times of temporary plugging and diverting and the amount of temporary plugging agent were determined under the optimal refracturing timing. Daily oil production per well increased from 2.3 t/d to 16.5 t/d in the field test. The research results provide important reference for refracturing optimization design of similar tight oil reservoirs.展开更多
Temporary plugging and diverting fracturing(TPDF),involving inner-fracture temporary plugging(IFTP)and inner-stage temporary plugging(ISTP),has been proposed as a widely applied technique in China,for promoting the un...Temporary plugging and diverting fracturing(TPDF),involving inner-fracture temporary plugging(IFTP)and inner-stage temporary plugging(ISTP),has been proposed as a widely applied technique in China,for promoting the uniform initiation and propagation of multi-clustered hydraulic fractures(HFs)in a horizontal well of the shale oil/gas reservoirs.However,how the key plugging parameters controlling the multi-fracture growth and the pumping pressure response during TPDF in shale with dense bedding planes(BPs)and natural fractures(NFs)is still unclear,which limits the optimization of TPDF scheme.In this paper,a series of TPDF simulation experiments within a stage of multi-cluster in a horizontal well were carried out on outcrops of Longmaxi Formation shale using a large-scale true tri-axial fracturing simulation system,combined with the acoustic emission(AE)monitor and computed tomography(CT)scanning techniques.Each experiment was divided into three stages,including the conventional fracturing(CF),IFTP and ISTP.Multi-fracture initiation and propagation behavior,and the dominant controlling parameters were examined,containing the particle sizes,concentration of temporary plugging agent(TPA),and cluster number.The results showed that the number of transverse HFs(THFs)and the overall complexity of fracture morphology increase with the increase in TPA concentration and perforation cluster number.Obviously,the required concentration of TPA is positively correlated with the cluster number.Higher peak values and continuous fluctuations of pumping pressure during TPDF may indicate the creation of diversion fractures.The creation of standard THFs during CF is favorable to the creation of diversion fractures during TPDF.Moreover,the activation of BPs nearby the wellbore during CF is unfavorable to the subsequent pressure buildup during TPDF,resulting in poor plugging and diverting effect.Notably,under the strike-slip fault stress regime,the diversion of THFs is not likely during IFTP,which is similar as the results of ISTP to initiate mainly the un-initiated or under-propagated perforation clusters.Three typical pressure curve types during TPDF can be summarized to briefly identify the hydraulic fracture diversion effects,including good(multiple branches or/and THFs can be newly created),fair(HF initiation along the slightly opened BPs and then activating the NFs),and bad(HF initiation along the largely opened BPs and then connecting with the NFs).展开更多
基金the National Natural Science Foundation of China fund (Project number: 52174045 and No. 52104011)Research Foundation of China University of Petroleum-Beijing at Karamay (No. XQZX20210001)PetroChina Innovation Foundation (2020D50070207)。
文摘Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness of reservoir stimulation. Temporary plugging and diverting fracturing(TPDF) is considered to be a potential uniform-stimulation method for creating multiple fractures simultaneously in the oilfield. However, the multi-fracture propagation morphology during TPDF is not clear now. The purpose of this study is to quantitatively investigate the multi-fracture propagation morphology during TPDF through true tri-axial fracturing experiments and CT scanning. Critical parameters such as fracture spacing, number of perforation clusters, the viscosity of fracturing fluid, and the in-situ stress have been investigated. The fracture geometry before and after diversion have been quantitively analyzed based on the two-dimensional CT slices and three-dimensional reconstruction method. The main conclusions are as follows:(1) When injecting the high viscosity fluid or perforating at the location with low in-situ stress, multiple hydraulic fractures would simultaneously propagate. Otherwise, only one hydraulic fracture was created during the initial fracturing stage(IFS) for most tests.(2) The perforation cluster effectiveness(PCE) has increased from 26.62% during the IFS to 88.86% after using diverters.(3) The diverted fracture volume has no apparent correlation with the pressure peak and peak frequency during the diversion fracturing stage(DFS) but is positively correlated with water-work.(4) Four types of plugging behavior in shale could be controlled by adjusting the diverter recipe and diverter injection time, and the plugging behavior includes plugging the natural fracture in the wellbore, plugging the previous hydraulic fractures, plugging the fracture tip and plugging the bedding.
基金Supported by the National Natural Science Foundation of China(51525404,51504203)China National Science and Technology Major Project(2016ZX05002002)
文摘Tight oil reservoirs in Songliao Basin were taken as subjects and a novel idealized refracturing well concept was proposed by considering the special parameters of volume fracturing horizontal wells, the refracturing potential of candidate wells were graded and prioritized, and a production prediction model of refracturing considering the stress sensitivity was established using numerical simulation method to sort out the optimal refracturing method and timing. The simulations show that: with the same perforation clusters, the order of fracturing technologies with contribution to productivity from big to small is refracturing between existent fractured sections, orientation diversion inside fractures, extended refracturing, refracturing of existent fractures; and the later the refracturing timing, the shorter the effective time. Based on this, the prediction model of breakdown pressure considering the variation of formation pressure was used to find out the variation pattern of breakdown pressure of different positions at different production time. Through the classification of the breakdown pressure, the times of temporary plugging and diverting and the amount of temporary plugging agent were determined under the optimal refracturing timing. Daily oil production per well increased from 2.3 t/d to 16.5 t/d in the field test. The research results provide important reference for refracturing optimization design of similar tight oil reservoirs.
基金supported by the National Natural Science Foundation of China(Grant No.51974332)。
文摘Temporary plugging and diverting fracturing(TPDF),involving inner-fracture temporary plugging(IFTP)and inner-stage temporary plugging(ISTP),has been proposed as a widely applied technique in China,for promoting the uniform initiation and propagation of multi-clustered hydraulic fractures(HFs)in a horizontal well of the shale oil/gas reservoirs.However,how the key plugging parameters controlling the multi-fracture growth and the pumping pressure response during TPDF in shale with dense bedding planes(BPs)and natural fractures(NFs)is still unclear,which limits the optimization of TPDF scheme.In this paper,a series of TPDF simulation experiments within a stage of multi-cluster in a horizontal well were carried out on outcrops of Longmaxi Formation shale using a large-scale true tri-axial fracturing simulation system,combined with the acoustic emission(AE)monitor and computed tomography(CT)scanning techniques.Each experiment was divided into three stages,including the conventional fracturing(CF),IFTP and ISTP.Multi-fracture initiation and propagation behavior,and the dominant controlling parameters were examined,containing the particle sizes,concentration of temporary plugging agent(TPA),and cluster number.The results showed that the number of transverse HFs(THFs)and the overall complexity of fracture morphology increase with the increase in TPA concentration and perforation cluster number.Obviously,the required concentration of TPA is positively correlated with the cluster number.Higher peak values and continuous fluctuations of pumping pressure during TPDF may indicate the creation of diversion fractures.The creation of standard THFs during CF is favorable to the creation of diversion fractures during TPDF.Moreover,the activation of BPs nearby the wellbore during CF is unfavorable to the subsequent pressure buildup during TPDF,resulting in poor plugging and diverting effect.Notably,under the strike-slip fault stress regime,the diversion of THFs is not likely during IFTP,which is similar as the results of ISTP to initiate mainly the un-initiated or under-propagated perforation clusters.Three typical pressure curve types during TPDF can be summarized to briefly identify the hydraulic fracture diversion effects,including good(multiple branches or/and THFs can be newly created),fair(HF initiation along the slightly opened BPs and then activating the NFs),and bad(HF initiation along the largely opened BPs and then connecting with the NFs).