The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier...The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,t...This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,the Laplace-Adomian Decomposition Method(LADM)is used to provide a new approach to solving this problem.Additionally,we give a comparison between the exact and approximate solutions at various points with absolute error.The obtained result showed that the proposed method is effective and accurate for this problem and can be used for many other evolution of nonlinear equations in mathematical physics.展开更多
We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third ord...We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
In this paper,the oscillation of solutions of hyperbolic partial functional differential equations is studied,and oscillatory criteria of solutions with three kinds of boundary conditions are obtained.
A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed...A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved nu- merically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model' s performance on prediction of wave heights around breaking point for the wave motions in surf zone.展开更多
In this paper, oscillatory properties for solutions of the systems of certain quasilinear impulsive delay hyperbolic equations with nonlinear diffusion coefficient are investigated. A sufficient criterion for oscillat...In this paper, oscillatory properties for solutions of the systems of certain quasilinear impulsive delay hyperbolic equations with nonlinear diffusion coefficient are investigated. A sufficient criterion for oscillations of such systems is obtained.展开更多
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method.The fractiona...In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method.The fractional derivatives are described in the Caputo sense.The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations.展开更多
New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations fo...New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is gready saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
A proper orthogonal decomposition(POD) method was successfully used in the reduced-order modeling of complex systems.In this paper,we extend the applications of POD method,namely,apply POD method to a classical fini...A proper orthogonal decomposition(POD) method was successfully used in the reduced-order modeling of complex systems.In this paper,we extend the applications of POD method,namely,apply POD method to a classical finite element(FE) formulation for second-order hyperbolic equations with real practical applied background,establish a reduced FE formulation with lower dimensions and high enough accuracy,and provide the error estimates between the reduced FE solutions and the classical FE solutions and the implementation of algorithm for solving reduced FE formulation so as to provide scientific theoretic basis for service applications.Some numerical examples illustrate the fact that the results of numerical computation are consistent with theoretical conclusions.Moreover,it is shown that the reduced FE formulation based on POD method is feasible and efficient for solving FE formulation for second-order hyperbolic equations.展开更多
In this paper, oscillatory properties of all solutions for neutral type impulsive hyperbolic equations with several delays under the Robin boundary condition are investigated and several new sufficient conditions for ...In this paper, oscillatory properties of all solutions for neutral type impulsive hyperbolic equations with several delays under the Robin boundary condition are investigated and several new sufficient conditions for oscillation are presented.展开更多
In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD redu...In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system ...The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system of hypersingular integro-differential equations with unknown functions given by the displacement jumps across opposite faces of the micro-crazes. Once the displacement jumps are obtained by approximately solving the integro-differential equations, the effective stiffness of the micro-crazed interface can be readily computed. The effective stiffness is an important quantity needed for expressing the interfacial conditions in the spring-like macro-model of soft interfaces. Specific case studies are conducted to gain physical insights into how the effective stiffness of the interface may be influenced by the details of the interfacial micro-crazes.展开更多
Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differenti...Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differential equations in Banach spaces are studied. Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained.展开更多
基金The NNSF (99200204) of Liaoning Province, China.
文摘The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
文摘This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,the Laplace-Adomian Decomposition Method(LADM)is used to provide a new approach to solving this problem.Additionally,we give a comparison between the exact and approximate solutions at various points with absolute error.The obtained result showed that the proposed method is effective and accurate for this problem and can be used for many other evolution of nonlinear equations in mathematical physics.
基金partially supported by the National Nature Science Foundation of China(12271114)the Guangxi Natural Science Foundation(2023JJD110009,2019JJG110003,2019AC20214)+2 种基金the Innovation Project of Guangxi Graduate Education(JGY2023061)the Key Laboratory of Mathematical Model and Application(Guangxi Normal University)the Education Department of Guangxi Zhuang Autonomous Region。
文摘We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.
文摘In this paper,the oscillation of solutions of hyperbolic partial functional differential equations is studied,and oscillatory criteria of solutions with three kinds of boundary conditions are obtained.
基金the National Natural Science Foundation of China (Grant Nos .50479053 and10672034)the Programfor Changjiang Scholars and Innovative Research Teamin Universitythe foundation for doctoral degree education of the Education Ministry of China
文摘A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved nu- merically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model' s performance on prediction of wave heights around breaking point for the wave motions in surf zone.
基金Supported by Hunan Provincial NSF(05jj400008)of China under Grant.
文摘In this paper, oscillatory properties for solutions of the systems of certain quasilinear impulsive delay hyperbolic equations with nonlinear diffusion coefficient are investigated. A sufficient criterion for oscillations of such systems is obtained.
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
文摘In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method.The fractional derivatives are described in the Caputo sense.The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.50479053and10672034)the Program for Changjiang Scholars and Innovative Research Teamin University,and thefoundationfordoctoral degree education of the Education Ministry of China
文摘New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is gready saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金supported by the National Science Foundation of China (11061009,40821092)the National Basic Research Program (2010CB428403,2009CB421407,2010CB951001)Natural Science Foundation of Hebei Province (A2010001663)
文摘A proper orthogonal decomposition(POD) method was successfully used in the reduced-order modeling of complex systems.In this paper,we extend the applications of POD method,namely,apply POD method to a classical finite element(FE) formulation for second-order hyperbolic equations with real practical applied background,establish a reduced FE formulation with lower dimensions and high enough accuracy,and provide the error estimates between the reduced FE solutions and the classical FE solutions and the implementation of algorithm for solving reduced FE formulation so as to provide scientific theoretic basis for service applications.Some numerical examples illustrate the fact that the results of numerical computation are consistent with theoretical conclusions.Moreover,it is shown that the reduced FE formulation based on POD method is feasible and efficient for solving FE formulation for second-order hyperbolic equations.
文摘In this paper, oscillatory properties of all solutions for neutral type impulsive hyperbolic equations with several delays under the Robin boundary condition are investigated and several new sufficient conditions for oscillation are presented.
基金supported by the National Science Foundation of China(11271127,11361035)Science Research of Guizhou Education Department(QJHKYZ[2013]207)Natural Science Foundation of Inner Mongolia(2012MS0106)
文摘In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
文摘The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system of hypersingular integro-differential equations with unknown functions given by the displacement jumps across opposite faces of the micro-crazes. Once the displacement jumps are obtained by approximately solving the integro-differential equations, the effective stiffness of the micro-crazed interface can be readily computed. The effective stiffness is an important quantity needed for expressing the interfacial conditions in the spring-like macro-model of soft interfaces. Specific case studies are conducted to gain physical insights into how the effective stiffness of the interface may be influenced by the details of the interfacial micro-crazes.
文摘Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differential equations in Banach spaces are studied. Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained.