期刊文献+
共找到5,987篇文章
< 1 2 250 >
每页显示 20 50 100
GRAY-BOX" MODELING METHOD AND PARAMETERS IDENTIFICATION FOR LARGE-SCALE HYDRAULIC SYSTEM 被引量:3
1
作者 LiYongtang TingKwun-Lon 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第1期1-3,共3页
Modeling and digital simulation is an effective method to analyze the dynamiccharacteristics of hydraulic system. It is difficult to determine some performance parameters inthe hydraulic system by means of currently u... Modeling and digital simulation is an effective method to analyze the dynamiccharacteristics of hydraulic system. It is difficult to determine some performance parameters inthe hydraulic system by means of currently used modeling methods. The 'gray-box' modeling method forlarge-scale hydraulic system is introduced. The principle of the method, the submodels of somecomponents and the parameters identification of components or subsystem are researched. 展开更多
关键词 modelING SIMULATION hydraulic system
在线阅读 下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane 被引量:1
2
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
在线阅读 下载PDF
Using fracture-based continuum modeling of coupled geomechanical-hydrological processes for numerical simulation of hydraulic fracturing
3
作者 Goodluck I.Ofoegbu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1582-1599,共18页
This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fr... This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain. 展开更多
关键词 Discrete fracture Fracture-based continuum modeling Fracture caging High-density fracturing hydraulic fracturing Preexisting fracture
在线阅读 下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
4
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) large-scale model Self-supervised learning Deep neural network
在线阅读 下载PDF
Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks 被引量:1
5
作者 Huan-feng DUAN Guo-ping YU 《Water Science and Engineering》 EI CAS 2010年第1期23-35,共13页
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by... With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods. 展开更多
关键词 large-scale networks hydraulic simulation graph theory fundamental loop spanning tree EFFICIENCY
在线阅读 下载PDF
Construction of Risk Assessment Application Model of Epidemic Disease in Large-scale Pig Farms 被引量:1
6
作者 谭业平 刘强 +3 位作者 胡肄农 郁达威 何孔旺 陆昌华 《Agricultural Science & Technology》 CAS 2016年第9期2124-2126,共3页
The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and deve... The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and development of risk assessment system. The assessed pig farm uploaded the epidemic disease risk data information through on-line answering evaluating questionnaire to get the immediate evaluation report. The model could enhance the risk communication between pig farm veterinarian, manager and veterinary experts to help farm system understand and find disease risk factors, assess and report the potential high risk items of the pig farm in the three systems of engineering epidemic disease prevention technology, biological safety and immune monitoring, and promote the improvement and perfection of epidemic disease prevention and control measures. 展开更多
关键词 large-scale pig farm Risk assessment of epidemic disease model construction
在线阅读 下载PDF
Implications for fault reactivation and seismicity induced by hydraulic fracturing 被引量:1
7
作者 Zi-Han Sun Ming-Guang Che +3 位作者 Li-Hong Zhu Shu-Juan Zhang Ji-Yuan Lu Chang-Yu Jin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1081-1098,共18页
Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operation... Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at these positions in the coupled process. Therefore,notable attention should be given to the injection rate during fracturing, fault position, and position along faults as important considerations to help reduce the potential for induced seismicity. Our model was verified and confirmed using the case of the Longmaxi Formation in the Sichuan Basin, China, in which the reported microseismic data were correlated with high critical stiffness values. This work supplies new thoughts of the seismic risk associated with HF engineering. 展开更多
关键词 hydraulic fracturing Coulomb failure stress Rate-and-state fraction model Linear stability analysis Critical stiffness Seismically induced fault
在线阅读 下载PDF
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES 被引量:35
8
作者 A.P.Bunger Robert G.Jeffrey 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期443-452,共10页
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient applicat... Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case. 展开更多
关键词 hydraulic fracture cohesive zone model finite element method
在线阅读 下载PDF
Nonlinear Mathematical Modeling and Sensitivity Analysis of Hydraulic Drive Unit 被引量:12
9
作者 KONG Xiangdong YU Bin +2 位作者 QUAN Lingxiao BA Kaixian WU Liujie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期999-1011,共13页
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displa... The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit. 展开更多
关键词 nonlinear mathematical model hydraulic drive unit valve-controlled symmetrical cylinder sensitivity analysis sensitivity index
在线阅读 下载PDF
Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM 被引量:13
10
作者 Ingrid Tomac Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期92-104,共13页
This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has be... This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity. 展开更多
关键词 Hydro-thermo-mechanical(HTM) modeling Enhanced geothermal systems(EGSs) Discrete element method(DEM) Bonded particle model(BPM) Conductive-convective heat flow and transport hydraulic fracturing Rock permeability enhancement
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
11
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification large-scale trainingcorpus LONG SHORT-TERM memory recurrentneural network
在线阅读 下载PDF
Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins 被引量:3
12
作者 Juan Pinos Luis Timbe 《Water Science and Engineering》 EI CAS CSCD 2019年第1期11-18,共8页
Hydraulic models for the generation of flood inundation maps are not commonly applied in mountain river basins because of the difficulty in modeling the hydraulic behavior and the complex topography. This paper presen... Hydraulic models for the generation of flood inundation maps are not commonly applied in mountain river basins because of the difficulty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of flood inundation maps. The study area covers a 5-km reach of the Santa B-arbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and flood extent, in terms of the mean absolute difference and measure of fit. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for flood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty. 展开更多
关键词 TWO-DIMENSIONAL hydraulic models FLOOD modeling FLOOD extent Water surface ELEVATION High MOUNTAIN RIVER Ecuador
在线阅读 下载PDF
Modelling of an hydraulic excavator using simplifiedrefined instrumental variable(SRIV)algorithm 被引量:6
13
作者 Jun GU James TAYLOR Derek SEWARD 《控制理论与应用(英文版)》 EI 2007年第4期391-396,共6页
Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel mo... Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel modelling method for a highly nonlinear system of a hydraulic excavator is presented. Based on the data collected in the excavator's arms driving experiments, a data-based excavator dynamic model using Simplified Refined Instrumental Variable (SRIV) identification and estimation algorithms is established. The validity of the proposed data-based model is indirectly demonstrated by the performance of computer simulation and the.real machine motion control exoeriments. 展开更多
关键词 hydraulic excavator Nonlinear dynamics Data based model Simplified refined instrumental variable algorithm
在线阅读 下载PDF
Modeling unsaturated flow in fractured rocks with scaling relationships between hydraulic parameters 被引量:9
14
作者 Yi-Feng Chen Yuke Ye +2 位作者 Ran Hu Zhibing Yang Chuang-Bing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1697-1709,共13页
Modeling unsaturated flow in fractured rocks is essential in various subsurface engineering applications,but it remains a great challenge due to the difficulties in determining the unsaturated hydraulic properties of ... Modeling unsaturated flow in fractured rocks is essential in various subsurface engineering applications,but it remains a great challenge due to the difficulties in determining the unsaturated hydraulic properties of rocks that contain various scales of fractures.It is generally accepted that the van Genuchten(VG)model can be applied to fractured rocks,provided that the hydraulic parameters could be representatively determined.In this study,scaling relationships between the VG parameters(a and n)and hydraulic conductivity(K)across 8 orders of magnitude,from 10^(-10)m/s to 10^(-2)m/s,were proposed by statistical analysis of data obtained from 1416 soil samples.The correlations were then generalized to predict the upper bounds of VG parameters for fractured rocks from the K data that could be obtained more easily under field conditions,and were validated against a limited set of data from cores,fractures and fractured rocks available in the literature.The upper bound estimates significantly narrow the ranges of VG parameters,and the representative values of a and n for fractured rocks at the field scale can then be determined with confidence by inverse modeling using groundwater observations in saturated zones.The proposed methodology was applied to saturated-unsaturated flow modeling in the right-bank slope at the Baihetan dam site with a continuum approach,showing that most of the flow behaviors in fractured rocks in this complex hydrogeological condition could be properly reproduced.The proposed method overcomes difficulties in suction measurement in fractured rocks with strong heterogeneity,and provides a feasible way for modeling of saturated-unsaturated flow in fractured rocks with acceptable engineering accuracy. 展开更多
关键词 Unsaturated flow van genuchten model hydraulic properties Fractured rocks Continuum approach
在线阅读 下载PDF
Three-dimensional distinct element modeling of fault reactivation and induced seismicity due to hydraulic fracturing injection and backflow 被引量:8
15
作者 Zirui Yin Hongwei Huang +2 位作者 Fengshou Zhang Lianyang Zhang Shawn Maxwell 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期752-767,共16页
This paper presents a three-dimensional fully hydro-mechanical coupled distinct element study on fault reactivation and induced seismicity due to hydraulic fracturing injection and subsequent backflow process,based on... This paper presents a three-dimensional fully hydro-mechanical coupled distinct element study on fault reactivation and induced seismicity due to hydraulic fracturing injection and subsequent backflow process,based on the geological data in Horn River Basin,Northeast British Columbia,Canada.The modeling results indicate that the maximum magnitude of seismic events appears at the fracturing stage.The increment of fluid volume in the fault determines the cumulative moment and maximum fault slippage,both of which are essentially proportional to the fluid volume.After backflow starts,the fluid near the joint intersection keeps flowing into the critically stressed fault,rather than backflows to the wellbore.Although fault slippage is affected by the changes of both pore pressure and ambient rock stress,their contributions are different at fracturing and backflow stages.At fracturing stage,pore pressure change shows a dominant effect on induced fault slippage.While at backflow stage,because the fault plane is under a critical stress state,any minor disturbance would trigger a fault slippage.The energy analysis indicates that aseismic deformation takes up a majority of the total deformation energy during hydraulic fracturing.A common regularity is found in both fracturing-and backflow-induced seismicity that the cumulative moment and maximum fault slippage are nearly proportional to the injected fluid volume.This study shows some novel insights into interpreting fracturing-and backflowinduced seismicity,and provides useful information for controlling and mitigating seismic hazards due to hydraulic fracturing. 展开更多
关键词 Induced seismicity Fault reactivation hydraulic fracturing BACKFLOW Geomechanical modeling Distinct element method
在线阅读 下载PDF
Reliability modeling of hydraulic system of drum shearer machine 被引量:8
16
作者 SEYED HADI Hoseinie MOHAMMAD Ataie +1 位作者 REZA Khalookakaei UDAY Kumar 《Journal of Coal Science & Engineering(China)》 2011年第4期450-456,共7页
The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyze... The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyzed. A case study was done in the Tabas Coal Mine in Iran for failure data collection. The results of the statistical analysis show that the time between failures (TBF) data of this system followed the 3-parameters Weibull distribution. There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation. The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation. The failure rate of this system decreases when time increases. Therefore, corrective maintenance (run-to-t^ailure) was selected as the best maintenance strategy for it. 展开更多
关键词 reliability modeling hydraulic system drum shearer maintenance strategy
在线阅读 下载PDF
Validating the Runoff from the PRECIS Model Using a Large-Scale Routing Model 被引量:3
17
作者 曹丽娟 董文杰 +2 位作者 许吟隆 张勇 Michael SPARROW 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期855-862,共8页
The streamflow over the Yellow River basin is simulated using the PRECIS (Providing REgional Climates for Impacts Studies) regional climate model driven by 15-year (1979-1993) ECMWF reanalysis data as the initial ... The streamflow over the Yellow River basin is simulated using the PRECIS (Providing REgional Climates for Impacts Studies) regional climate model driven by 15-year (1979-1993) ECMWF reanalysis data as the initial and lateral boundary conditions and an off-line large-scale routing model (LRM). The LRM uses physical catchment and river channel information and allows streamflow to be predicted for large continental rivers with a 1°×1° spatial resolution. The results show that the PRECIS model can reproduce the general southeast to northwest gradient distribution of the precipitation over the Yellow River basin, The PRECIS- LRM model combination has the capability to simulate the seasonal and annual streamflow over the Yellow River basin. The simulated streamflow is generally coincident with the naturalized streamflow both in timing and in magnitude. 展开更多
关键词 regional climate model large-scale routing model model validation RUNOFF the Yellow River
在线阅读 下载PDF
Development of dynamic-mathematical model of hydraulic excavator 被引量:5
18
作者 Vujic Dragoljub Lazarevic Olgica Batinic Vojislav 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2010-2018,共9页
This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized... This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized coordinate which represents rotation around transversal main central axis of inertia of undercarriage.The excavator is described by a system of six nonlinear,nonhomogenous differential equations of the second kind.Numerical analysis of the differential equations has been done for BTH-600 hydraulic excavator with moving mechanism with pneumatic wheels. 展开更多
关键词 hydraulic excavator dynamic behaviour dynamic-mathematical model
在线阅读 下载PDF
Theoretical Model of Dynamic Bulk Modulus for Aerated Hydraulic Fluid 被引量:4
19
作者 Xiaoming Yuan Weiqi Wang +1 位作者 Xuan Zhu Lijie Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期183-193,共11页
Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter m... Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus. 展开更多
关键词 Aerated hydraulic fluid Dynamic bulk modulus Theory model Air fraction PRESSURE
在线阅读 下载PDF
Modeling and control of hydraulic excavator's arm 被引量:5
20
作者 何清华 张大庆 +1 位作者 郝鹏 张海涛 《Journal of Central South University of Technology》 EI 2006年第4期422-427,共6页
In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedo... In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°. 展开更多
关键词 adaptive robust control autonomous excavation dynamic model hydraulic excavator motion control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部