Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel ...Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.展开更多
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r...In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.展开更多
With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app...To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.展开更多
如何快速地对永磁同步电机(permanent magnetic synchronous machine,PMSM)转子位置实现精确估计是实现PMSM无传感器控制的关键。然而,PMSM驱动系统的反电势谐波问题及其参数时变的特点影响基于锁相环(phase locked loop,PLL)转子位置...如何快速地对永磁同步电机(permanent magnetic synchronous machine,PMSM)转子位置实现精确估计是实现PMSM无传感器控制的关键。然而,PMSM驱动系统的反电势谐波问题及其参数时变的特点影响基于锁相环(phase locked loop,PLL)转子位置估计方法的速度和精度。由于PMSM定子反电势中包含大量谐波,已有基于锁相环的滤波方法无法根据转速变化自适应调节频率,导致变转速工况下转子位置估计精度降低。为此,提出一种基于自适应混合滤波器的PLL估计方法,在分析PMSM包含的反电势谐波成分后,设计一种调节参数的混合自适应滤波器(hybrid adaptive filter based PLL,HAF-PLL)。通过仿真实验验证了所提方法对反电势谐波具有良好的滤波效果,能够准确检测出PMSM的转子位置。展开更多
A novel nonlinear model for surface permanent magnet synchronous motors(SPMSMs) is adopted to estimate the initial rotor position for hybrid electric vehicles(HEVs). Usually, the accuracy of initial rotor position...A novel nonlinear model for surface permanent magnet synchronous motors(SPMSMs) is adopted to estimate the initial rotor position for hybrid electric vehicles(HEVs). Usually, the accuracy of initial rotor position estimation for SPMSMs relies on magnetic saturation. To verify the saturation effect, the transient finite element analysis(FEA) model is presented first. Hybrid injection of a static voltage vector(SVV) superimposed with a high-frequency rotating voltage is proposed. The magnetic polarity is roughly identified with the aid of the saturation evaluation function, based on which an estimation of the position is performed. During this procedure, a special demodulation is suggested to extract signals of iron core saturation and rotor position. A Simulink/MATLAB platform for SPMSMs at standstill is constituted, and the effectiveness of the proposed strategy is verified. The proposed method is also validated by experimental results of an SPMSM drive.展开更多
In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensivel...In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensively reviewed in terms of basic features,merits and demerits,and compared for HEV/EV traction applications.Their latest developments are highlighted while their electromagnetic performance are quantitatively compared based on the same specification as the Prius 2010 interior PM(IPM)machine,including the torque/power-speed characteristics,power factor,efficiency map,and drive cycle based overall efficiency.It is found that PM-assisted synchronous reluctance machines are the most promising alternatives to IPM machines with lower cost and potentially higher overall efficiency.Although IMs are cheaper and have better overload capability,they exhibit lower efficiency and power factor.Other electrical machines,such as synchronous reluctance machines,wound field machines,as well as many other newly developed machines,are currently less attractive due to lower torque density and efficiency.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 52077123 and 51737008in part by the Natural Science Foundation of Shandong Province of China for Outstanding Young Scholars,under Grant ZR2021YQ35。
文摘Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.
文摘In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
基金co-supported by the National Natural Science Foundation of China(No.52177028)in part by the Aeronautical Science Foundation of China(No.201907051002)。
文摘To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.
文摘如何快速地对永磁同步电机(permanent magnetic synchronous machine,PMSM)转子位置实现精确估计是实现PMSM无传感器控制的关键。然而,PMSM驱动系统的反电势谐波问题及其参数时变的特点影响基于锁相环(phase locked loop,PLL)转子位置估计方法的速度和精度。由于PMSM定子反电势中包含大量谐波,已有基于锁相环的滤波方法无法根据转速变化自适应调节频率,导致变转速工况下转子位置估计精度降低。为此,提出一种基于自适应混合滤波器的PLL估计方法,在分析PMSM包含的反电势谐波成分后,设计一种调节参数的混合自适应滤波器(hybrid adaptive filter based PLL,HAF-PLL)。通过仿真实验验证了所提方法对反电势谐波具有良好的滤波效果,能够准确检测出PMSM的转子位置。
基金Project supported by the National Natural Science Foundation of China(Nos.51207029 and 51507039) the Fundamental Research Funds for the Central Universities,China(No.HIT.NSRIF.2017013) the China Postdoctoral Science Foundation(No.2016M591529)
文摘A novel nonlinear model for surface permanent magnet synchronous motors(SPMSMs) is adopted to estimate the initial rotor position for hybrid electric vehicles(HEVs). Usually, the accuracy of initial rotor position estimation for SPMSMs relies on magnetic saturation. To verify the saturation effect, the transient finite element analysis(FEA) model is presented first. Hybrid injection of a static voltage vector(SVV) superimposed with a high-frequency rotating voltage is proposed. The magnetic polarity is roughly identified with the aid of the saturation evaluation function, based on which an estimation of the position is performed. During this procedure, a special demodulation is suggested to extract signals of iron core saturation and rotor position. A Simulink/MATLAB platform for SPMSMs at standstill is constituted, and the effectiveness of the proposed strategy is verified. The proposed method is also validated by experimental results of an SPMSM drive.
基金This work is partially supported by Guangdong Welling Motor Manufacturing Co.,Ltd and Guangdong Innovative Research Team Program(No.2011N084)China,Valeo Electrical Systems,France,and the Royal Academy of Engineering/Siemens Research Chair Program,UK.
文摘In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensively reviewed in terms of basic features,merits and demerits,and compared for HEV/EV traction applications.Their latest developments are highlighted while their electromagnetic performance are quantitatively compared based on the same specification as the Prius 2010 interior PM(IPM)machine,including the torque/power-speed characteristics,power factor,efficiency map,and drive cycle based overall efficiency.It is found that PM-assisted synchronous reluctance machines are the most promising alternatives to IPM machines with lower cost and potentially higher overall efficiency.Although IMs are cheaper and have better overload capability,they exhibit lower efficiency and power factor.Other electrical machines,such as synchronous reluctance machines,wound field machines,as well as many other newly developed machines,are currently less attractive due to lower torque density and efficiency.